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1 INTRODUCTION
A plethora of Congestion Control Algorithms (CCA) [1–4] have
emerged for decades along with ever-evolving network technolo-
gies and rapidly changing application requirements. To quantita-
tively compare different CCAs, researchers have proposed different
metrics from various aspects, e.g., throughput and delay for perfor-
mance, Jain’s index [6] for fairness. In practice, these metrics are
mostly measured in a long-term manner (e.g., everyday [13]).

However, with the rising demand of the performance from appli-
cations, the transient performance of CCAs during network fluctu-
ations is also critical [9]. For example, for low-latency applications
such as videoconferencing, several 100ms stalls due to transient
network fluctuations could severely degrade the users’ experience.
Therefore, whether CCAs could responsively converge to the net-
work capacity is critical for users’ experience. However, such fluctu-
ations are difficult to be quantified in the long-term measurements
of CCAs since it only takes a small portion in the measurement
period. In this case, we are motivated to quantify the convergence
ability of CCAs to provide better understandings for operators.

Yet, it is challenging to quantify the transient reaction, i.e. the
convergence ability, of CCAs, which can be defined as the pattern
between network status change and the steady state. On one hand,
the network condition itself is complex and changeable, making
the input of CCA complicated. Inspired by Signal Processing, as
the CCA’s output will not change without the change of input, we
can treat the input as a combination of steps at different moments.
On the other hand, due to the complex nature of CCAs (usually
piecewise and nonlinear), it is hard to mathematically formulate1

1There are recent efforts trying to formulate CCAs, which remains preliminary and
might have performance gaps for quantitative comparisons [8].
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(a) Theoretical transient reaction in second-order system.
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(b) Transient reaction in emulation experiments
Figure 1: Transient reaction subjects to damped oscillation.

different CCAs with a unified model. The challenge would be exac-
erbated with the recently proposed blackbox CCAs based on deep
learning [1, 7]. In response, we treat the control system of a CCA
as a 2nd-order system, since its input is either the first moment
(mean) or the second moment (variance) of network variables and
the measurement of higher-order moments in real time could not
be accurate enough. According to Statistical Inference, the vari-
ance of the estimated expectation of N samples is 𝜎2/𝑁 while the
variance of the estimated variance is 2𝜎4/(𝑁 − 1), therefore much
more samples are required (squarely increasing) to bound the error
of the second moment to the level of the first moment. Accurate
measurement of higher-order moments would require much more
samples and is impractical to be collected and referred in real world.

Based on the above analysis, our key observation is that the
transient reaction of a second-order system is damped oscillation in
response to a step change. According to Control Theory, the tran-
sient reaction would be one of the 4 kinds of damped oscillations (as
shown in Figure 1(a)): undamped, under-damped, critically-damped,
and over-damped oscillation. As shown in Figure 1(a), when an
increase in the available bandwidth occurs, the transient reaction
suffers under-damped oscillation (the blue curve) if the CCA reacts
too aggressively with overshoot and uses more resource than avail-
able, resulting in dramatically occupied buffer, larger queuing delay
and even packet loss. On the other hand, if the transient reaction
appears to be over-damped oscillation (the purple curve), it means
the CCA reacts conservatively to the bandwidth increase, resulting
in a waste of bandwidth resources and even unconvergence at the
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next network change. When a CCA’s transient reaction is charac-
terized as critically-damped (the red curve), it means the CCA can
react to the network condition changes fast with minimal cost and
enter the steady state most quickly, which is apparently the optimal
case. Hence, we can evaluate a CCA’s transient performance by
capturing the feature of damped oscillation of the system.

Based on this observation, we propose a framework to give an
effective analysis on transient performance based on the damped os-
cillation hypothesis. To quantify the transient reaction, we measure
the gap between the actual oscillation and the critically damped
oscillation. However, we are confronted with 2 challenges: (1) How
can we detect when the CCA enters the steady state and demar-
cate the short-term reaction period? (2) How can we quantify the
behavior gap? In response, we use a steady-detect window to find
when a CCA enters the steady state based on the assumption that a
practical CCA should have limited fluctuations in the steady state.
To quantify the reaction performance, we use Normalized Area (i.e.,
the accumulated gap between the theoretical throughput and the
experimental throughput before CCA’s convergence) as the metric
and a smaller area means better performance. Our framework could
evaluate how close a CCA is to the optimal (critically damped) tran-
sient performance given a network condition. Therefore, with a
bunch of CCAs at hand, network operators can adopt our frame-
work to select the most well-behaved CCA (in the sense of transient
performance) under different network scenarios.

We use the framework to quantify and compare the transient
performance of three CCAs: BBR[3], Cubic [4] and Reno [5], giving
a preliminary and reasonable evaluation on transient performance.

2 FRAMEWORK
Our framework consists of 2 parts: (1) Steady State Detection to
confirm when CCA enters the steady state, and (2) Reaction Quan-
tification to quantify the transient performance.

Steady State Detection. As mentioned in §1, transient reaction
is the pattern between network status change and the steady state.
Thus, before measuring the reactive tendency, we must confirm
when the CCA enters the steady state (the convergence point). The
convergence points may vary greatly among different CCAs, so
we need to find out the specific convergence point case-by-case. If
we determine the convergence point earlier than its actual time,
the reaction performance measured will be worse than practice.
If we determine the convergence point later than the actual to
ensure that CCAs enter the steady state, the short-termed transient
reaction could be overwhelmed by the steady-state jitter in the
long time scale. The steady-state jitter is random and obscure and
differs among CCAs, but might dominate the overall tendency in
the large time scale blinding us from the transient performance.
Hence, we use a set of steady-detect windows (consisting of several
consecutive windows of the same size and uniform spacing) to
accurately position the convergence point. When the mean and
variance are almost the same among these windows, we consider
the CCA has already entered the steady state. We choose three 10-
RTT-sized windows, and the beginning of each window is separated
by 4-RTT. This does not bring much computation overhead and is
also enough to precisely detect the steady state in our experiments.

Reaction Quantification. Transient reaction is captured with
random noise, disabling us to fit the curve and derive an accurate
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(b) Areas with a 100 MTU-sized buffer.
Figure 2: Areas of 3 CCAs under a step change of link-capacity from 0 to
12Mbps and 50ms RTT with different buffer size. 1 MTU=1500 bytes.
mathematical expression of the CCA’s throughput for the classifi-
cation of oscillations. In response, we calculate Normalized Area to
quantify the transient performance. Area represents the accumu-
lated gap between the throughput of CCAs and the ground-truth
available bandwidth from the network change to the convergence
point (e.g., for critically damped oscillation, it is the area between
the red and pink dashed curve in Figure 1(a)), which is indicative
of the oscillation tendency. Obviously, critically damped oscilla-
tion has the smallest area and the areas of both under-damped and
over-damped largen with deviation of the damping. Additionally,
the impact of converging to a non-optimal value is covered by this
method. We normalize the area by reaction time and bandwidth
change, so the relative area value among different scenarios (e.g.,
with different bandwidth) is referable. Note that, by taking the
Normalized Area as our metric, we make no distinction between
under-damped oscillation and over-damped oscillation, simply ex-
amining the gap between them and the optimal situation.

3 EXPERIMENTS AND FUTUREWORK
We implement our framework2 on the Congestion Control Plane [10],
with some of its already deployed CCAs3: Reno [5], Cubic [4] and
BBR [3]. We use Mahimahi [11] to emulate the delay and the band-
width change, whose noise subjects to 3𝜎-truncated normal distri-
bution 𝑁 (0, 𝜎). We measure the throughput over the course of 100
60-second experiments under each set of network conditions using
Iperf [12]. BDP-related-sized window is used to smooth the raw
throughput data recorded at packet-level on milliseconds-scale by
Mahimahi. The result in Figure 1(b) shows that the throughput of
different CCAs subjects to different damped oscillations.

To illustrate the effectiveness of our framework, we set a step
change of link capacity from 0 to 12Mbps and RTT as 50ms with
different buffer size as an example. Figure 2(a) shows a small buffer
case while Figure 2(b) shows a larger buffer case. From the results,
we can compare the transient performance of different CCAs in
different cases, which is reasonable and consistent with theory.
When the buffer is small, loss-based CCAs(Cubic and Reno) have
better reaction performance and BBR has a long tail. This is because
loss-based CCAs increase their congestion window more quickly
than BBR. When the buffer is larger, loss-based CCAs degrade
their performance. The reason of this performance degradation is
that the loss-based CCAs tend to fill the bandwidth and bottleneck
buffer since they do not lower the sending rate until packet loss.
Additionally, the results give us the suggestion when considering
the transient performance: we can choose loss-based CCAs with
small buffer while choose BBR with large buffer.

In the future, we plan to adopt our framework to learning-based
CCAs in the hope of providing more insight on them.

2https://github.com/BobAnkh/TPCCA
3We use the CCA’s official implementations in https://ccp-project.github.io
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