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Abstract—Many video streaming applications will simultane-
ously transfer data in both directions, from the user to the
Internet (uplink) and from the Internet to users (downlink). How-
ever, for wireless local area networks (WLANs), the dominant
scenarios, the uplink and downlink flows share the same half-
duplex physical channel and compete for bandwidth resources.
Their bandwidths would be fairly apportioned under the existing
link layer access method, but a fair share might be suboptimal
for applications. For better application performance, we propose
Plum, to coordinate the bitrate of uplink and downlink flows,
and allocate the bandwidth in both directions to cater to
the application’s demands. To make the deployment of Plum
practical, we aim at not modifying the link layer but optimizing
the transport layers and above. We evaluate our mechanisms with
simulations based on real-world traces and testbed experiments,
and results show that Plum could improve the video bitrate of
streaming applications by up to 48-59%.

Index Terms—Video streaming, WLAN.

I. INTRODUCTION

Wireless video streaming applications with high interactiv-
ity, such as augmented reality (AR) / virtual reality (VR)
chatting or remote rendering [1]–[7] and videoconferenc-
ing [8]–[10], are getting more and more popular. For these
applications, wireless networks are the most convenient way
to access the Internet, which is expected to take up more
than half of traffic in the foreseeable future [11]. A noticeable
difference is that applications like VR require high-volume
data transmission in both directions – both uplink (from
the user to the Internet) and downlink (from the Internet
to the user) flows are volumetric. This is different from
traditional live streaming [12]–[14], where the data is mainly
unidirectional from the Internet to the user. For example, while
receiving video contents, VR users would upload several tens
of Mbps stream containing their avatars, graphics, videos and
many other VR world components to a remote server or other
users [15]. (§II-A1)

An outstanding feature of WLAN is that their channels
are half-duplex – The access point (AP) transmits downlink
flows and the client transmits uplink flows into the same
physical channel, competing for limited network resources
(Fig.2). Meanwhile, the uplink and downlink flows tend to
fairly1 share the network capacity based on the IEEE 802.11

1The word “fair” means getting equal chances to transmit data. The
bandwidth would be statistically close to equal, not precisely equal (See §V).
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medium access control (MAC) layer protocol [16] under the
most widely deployed channel access method [17]. (§II-A2)

However, from the application’s perspective, a fair share
between uplink and downlink might not be optimal for the
Quality-of-Experience (QoE). Instead, an unfair bandwidth
allocation between the uplink and downlink can maximize
the QoEs. For example, in a multi-user video streaming
application, a user’s uploading video quality decides the upper
bound of all the other viewers’ video quality2. As exemplified
in Fig.1(a), if the uplink and downlink flow fairly split the
WLAN capacity (e.g. 40 Mbps), the host only uses 20 Mbps
to transmit a degraded quality VR video stream. In a VR
virtual world where a player is presenting important videos
to attendees, the degradation of uplink quality will affect the
QoE of all users [18], [19] – at the same time, the quality of the
video/graphics from other attendees to this video player does
not matter as much. In this case, if we could unfairly “allocate”
more bandwidth to the uplink and less to the downlink, many
viewers would enjoy a satisfactory experience (Fig.1(b)).

The most straightforward way is to modify the MAC layer
protocol to be adaptive to the application requirements. How-

2Even if the relay server can adopt super-resolution to upscale the video
quality [18], [19], the authentic outputs are both computational-expensive and
unfaithful for real-time video streaming.979-8-3503-5171-2/24/$31.00 ©2024 IEEE



ever, this would incur large cross-layer coordination overhead.
It is also impractical to ask video streaming users to upgrade
their wireless hardware to enjoy the performance benefits.
To make it more lightweight, we seek to solve the problem
with rate control (from the transport layer and above). This is
feasible because, when the downlink sending rate is decreased
and the uplink increased, there are fewer downlink packets to
be sent and the vacated WiFi channel airtime could be used
by the uplink flow. The bandwidth is then “yielded” from one
direction to the other.

Unfortunately, existing rate control mechanisms at end-
points are unidirectional, that they only control the outgoing
flow sent by the user and lack coordination between the
(uplink) flow sent by the user and the (downlink) flow received
by the user. Both the adaptive bitrate (ABR) in the application
layer [20]–[26] and the congestion control in the transport
layer [27]–[32] are trying to match the sending rate with the
one-way available bandwidth observed by the sender, and fail
to realize bidirectional flow coordination (§II-B)

To achieve a better QoE for video streaming applications,
we propose Plum, an application-layer rate control method
that coordinates bidirectional (i.e. uplink and downlink) band-
widths under half-duplex bottlenecks. Our key insight is to
actively adjust the application data rates to “reallocate”
the bandwidth between the uplink and downlink rather than
passively matching the competition outcome from the MAC
layer. We implement this in the application layer as it is more
convenient to get application information. (§II-C)

However, we still face two main challenges during design:
at the policy level, deciding how much bandwidth to yield
between both directions to match the application’s need is
challenging. The QoE of the streaming application is nontrivial
to define and optimize with multiple users. The uplink and
downlink bitrates in total are limited by the capacity and
trading off with each other. A higher uplink bitrate would
increase other users’ QoE while a higher downlink bitrate
would benefit the user’s own QoE. With the constraints and
trade-off, it is nontrivial to decide the bidirectional bitrates.
In response, we set up an optimization model based on
Hoβfeld’s utility function [33] (§III-B), provide interpretable
mathematical analysis results of the optimal rate allocation
under various conditions, and use a nonlinear programming
algorithm to solve the optimal rate allocation and maximize
QoE in multiuser streaming scenarios. (§III-C)

From the system level, it is also challenging to practi-
cally enforce bidirectional bandwidth coordination. Since the
bidirectional flows have distributed senders (i.e., clients and
a relay server), it requires careful system designs to make
bandwidth decisions in one place and integrally notify all the
senders without inconsistency. Meanwhile, it is also important
to work well with existing rate control mechanisms like
congestion control. In response, we design a server-dominant,
easily deployable system that uses entangled state machines to
consistently control the bitrate of uplink and downlink flows
without interrupting the congestion control logic. (§III-D)

We conduct our experiments with real-world trace-driven

simulations and testbed experiments under the scenario of
multiuser video streaming applications. Our simulation results
show that Plum could improve the average user bitrate of
video streaming clients by up to 48-59% compared to the best
of the baselines, while being fair to the worst-case users. The
testbed experiments also show ∼16% improvement in average
user bitrate, further validating the real-world effectiveness of
Plum. (§IV)

The main contributions of this paper are:
• We identify the lack of bandwidth coordination between

uplink and downlink traffic under WiFi bottlenecks, which
impairs the performance of streaming applications. (§II)

• We design Plum, a bandwidth coordination method with
both a policy and a system, that tailors the uplink and
downlink bitrate to acquire more reasonable bandwidth
shares under half-duplex bottlenecks. (§III)

• We carry out NS-3 simulations and testbed experiments
to evaluate Plum’s performance, user fairness, and effec-
tiveness of Plum’s design. Our code is available at https:
//github.com/PlumRateControl/Plum. (§IV)
Ethical statement: Only Fig.6 involves human subjects.

Our tracker application only measures bandwidth usage and
gets user consent from the volunteers. User identity is masked,
and no private information (e.g., application names) is stored.

II. BACKGROUND & MOTIVATION

In this section, we introduce the background of bidirection-
ally volumetric streaming applications (§II-A1) and WLAN
half-duplex bottlenecks (§II-A2), then motivate Plum (§II-B).

A. Background

1) Bidirectionally Volumetric Streaming: In recent years,
high-definition interactive streaming applications are becom-
ing increasingly popular, including three-dimensional Aug-
mented Reality / Virtual Reality (3D AR/VR) for socialization,
gaming or metaverse [6], [15], [34], [35], and 4K video confer-
encing [8]–[10], [36], where clients push heavy-loaded uplink
flow (e.g., from their device camera or local files) and watch a
downlink video from peer client(s). These applications involve
volumetric streaming upload and download simultaneously,
which require tens to hundreds Mbps bandwidths to support
high streaming quality (e.g., green bands in Fig.3, data sourced
from [15], [35], [36]). Meanwhile, these applications often
have many attendees [35].

2) WLAN: Today’s video streaming users largely use
WLANs to access the Internet, as WLANs are ubiquitously
deployed and supported by user devices. Fig.3 plots the median
download speeds of WiFi users based on Speedtest public
dataset [37], which is often higher than the actual real-time
bandwidths. With the growth of bandwidth requirements of the
applications (e.g. HD VR), more than half of the world’s land
could not support such demands. With similar signal strengths
and data rates, the transmission from the AP to the station
and the station to the AP will share comparable bandwidths.
This is based on the most widely deployed access method,
Distributed Coordination Function (DCF). (See discussions on
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other access methods in §V.) In other words, without any
special control, the uplink and downlink flows of one user
would get fair bandwidth shares.

B. Motivation

Imbalanced uplink and downlink bandwidth allocation
might result in higher QoE. For interactive applications with
multiple participants, the uplink bitrate is the upper bound
of the downlink bitrate for other viewers [18], [19]. When
other users have abundant bandwidth, the uplink bandwidth is
crucial. As a motivating example, we estimate the expected
benefit of higher uplink bandwidth based on real-world WiFi
traces (Tr-Game in §IV-A), where the bandwidth distribution
is the dotted line (labeled as bandwidth) in Fig.4. Assume
that one user suffers from this WiFi bottleneck and that the
other users (accessing the Internet via wired links or different
WiFi APs) have abundant bandwidth, and the uplink flow of
each user is transcoded and relayed to other users. If the WiFi
user receives a downlink flow enough for its communication,
moderately increasing the uplink bandwidth is supposed to
improve the average user bitrate of all users. We compare
the distribution of the user bitrate when the WiFi bottleneck
bandwidth is evenly split (even-split), and when the bandwidth
is unevenly split between the uplink (0.8) and downlink (0.2)
(quintile-split). The median of the average bitrate is improved
by 58.1% with quintile-split. At other times, we might also
want to allocate more bandwidth for the WiFi user’s downlink
when other peers are too congested to obtain higher bitrate
even when the WiFi user uploads videos with higher quality.
The bandwidth shares ought to adapt to various situations
(number of users, QoE metrics, network bandwidth limits) to
maximize the overall QoE.

Changing the MAC layer access method would be heavy-
weight and lack deployability. Intuitively, the bandwidth

3Tested with a self-developed Android program by invoking the Network-
StatsManager API. The data is collected every 10 minutes by 5 volunteers
when they normally use their smartphones across a week.

share between the uplink and downlink is the direct conse-
quence of the MAC layer access method. However, modifying
the implementation of the MAC layer access method (e.g. the
backoff contention window) might have three drawbacks: (1)
Changing the contention mechanism might break the fairness
principle and affect the bandwidth of other users; (2) Adapting
the MAC layer mechanisms to application layer instructions
would be a large-span cross-layer design, which breaks the
simplicity of the layered network architecture and might bring
up unintended interactions and spaghetti designs [38], [39].
It incurs cross-layer signaling overhead for the MAC layer to
get the application requirements in real time and to frequently
change its channel access mechanism. (3) Changing the WiFi
MAC-layer channel access method is hard to deploy as it
may require modifications to the firmware of commercial
WiFi routers. Therefore, we should consider transport layer
rate control (i.e., congestion control) or application layer rate
control to realize bidirectional bandwidth coordination.

Bidirectional rate coordination is feasible under the ex-
isting MAC access method. The downlink bandwidth of
one user could be yielded to its uplink (and vice versa),
instead of being preempted by other competing users. This
is because the current MAC layer access method follows per-
station fairness, i.e., each station (user) in the WLAN gets
equal airtime to transmit. (See the evolution of WiFi fairness in
[40]) Our experiment based on a simple testbed also observes
the above WLAN bandwidth acquisition behaviors. We launch
Iperf [41] bulk flows between each client and a server. The
two clients (Client1 is a laptop and Client2 is a desktop) are
connected to the same WiFi AP (Tenda AX1803), and the
AP and the server are in the same sub-network. Each Iperf
experiment lasts for one minute and is repeated 5 times. The
results show that the bidirectional bandwidth reallocation of
Client2 barely impacts Client1’s bandwidth (Fig.5). The uplink
bandwidth of Client2 (C2UL) (37.3Mbps) without downlink
to itself (C2DL) is approximately the sum of C2UL and
C2DL (19.0+17.6=36.6Mbps) when there are flows from both
directions. Therefore, we could seek to reapportion the uplink
and downlink rates under the existing MAC access method.

The existing rate control mechanisms are unidirectional.
As we summarized in §I, existing rate control mechanisms
control the rate of each stream independently, which is well-
functioning when there is only one stream or loosely related
streams (e.g., parallel, homogeneous streams in the same
direction simply to enhance throughput) inside an application.
However, when the streams are from different directions and
have complex cascaded influences on the application QoE,
indulging them to grab bandwidth on their own would not
end up with a satisfactory QoE. In addition to traditional
congestion control and ABR that work for unidirectional flow,
a few other rate control mechanisms approach the edge of
our issue. However, they are also optimizations for unidi-
rectional flows and cannot achieve bidirectional bandwidth
coordination. Scavenger congestion control [42], [43] prior-
itizes network bandwidth for certain applications but lacks



prioritization for bidirectional flows in the same application.
Meanwhile, based on our measurement, in many cases there is
only one application with volumetric traffic on a smartphone
(>100kbps, the solid green line in Fig.6(a)), even though many
applications run simultaneously on smartphones (dotted line).
Therefore, there may not be a scavenger flow to yield the
bandwidth. While also considering the half-duplexity of WiFi
channels, TACK [44] optimizes the frequency of acknowledg-
ments (ACKs), which is also inside each unidirectional flow.
For streaming applications with volumetric reverse traffic, the
contention overhead of small ACKs becomes marginal.

C. Design Choice

It is feasible and more convenient to coordinate bidirec-
tional bandwidths in the application layer compared to the
transport layer. Compared to the transport layer rate control,
we choose application layer rate control since (1) it is easier to
get the application instructions and (2) it is more deployable
without any kernel-space modifications. We can realize our
intended functionality by actively shrinking the bitrate of the
video from one direction, and letting the stream from the other
direction grab the vacated bandwidth (Fig.7). In the shrunk di-
rection, the congestion control enters the “application-limited”
state. In the other direction, the requirement for the congestion
control algorithm is that it is a well-functioning algorithm that
could quickly grab the vacated bandwidth. At a high level,
the existence of bidirectional flows in one application creates
a factual gap between “application” and “flow”. Existing rate
control regards the sender and receiver of a flow (Layer 4) as
the “endpoint” in the end-to-end argument. Instead, we should
regard the application (Layer 5) as the ultimate endpoint
and coordinate bidirectional flows under the application to
eventually achieve a higher QoE.

Summary: We should coordinate the bandwidth for bidirec-
tional streams under half-duplex bottlenecks, by controlling
application data rate to reallocate bidirectional bandwidths.

III. DESIGN

Realizing this idea of bidirectional bandwidth coordi-
nation still faces many challenges (§III-A). In this sec-
tion, we solve these challenges and elaborate our design
(§III-B,§III-C,§III-D).

A. Design Challenges & Overview

Policy Challenge: How much bandwidth should be yielded
from one direction to the other? Both uplink and down-
link flow constitute application traffic and impact the user-
perceived QoE. How much bandwidth should be yielded
between the uplink and downlink, to achieve the best QoE
for the applications? If the flow from one direction (e.g., the
downlink) is yielded overly, the user would entirely sacrifice
her/his own watching experience. If the yielding is insufficient,
we may not be able to observe a significant improvement in
overall performance. The network capacity limits and video
content dependencies should also be considered, making the
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Name Function (Q(d)) Coefficient
Qlin d/M –
Qlog log(d+ 1)/ log(M + 1) –
Qsqrcc αd2 + (M−1 −Mα)d −M−2 ≤ α < 0
Qsqrcv αd2 + (M−1 −Mα)d 0 < α < (M2 − 2M)−1

Table I: Single-user QoE functions used in our utility function. M
is the maximum application bitrate. The QoE function gets a value
of 1 if d exceeds the maximum application bitrate M .

target bitrate non-trivial to decide. In response, we set up
utility function as metrics (§III-B), formulate an optimization
problem, and mathematically analyze the optimal bandwidth
allocation in a multiuser video streaming scenarios (§III-C).
Broader application scenarios are discussed in §VI.
System challenge: How to practically and integrally en-
force bidirectional bandwidth coordination? After knowing
the optimal bandwidths, integrally enforcing them requires
collaborative control at both the clients and the server by in-
band decision notification. How to ensure consistency of rate
decisions at all involved end-hosts? Under varying wireless
networks, our policy needs to adapt its target bitrates to
varying network conditions from time to time. As a rate control
mechanism, Plum also needs to seamlessly integrate with ex-
isting rate control modules such as congestion control. To cope
with these system challenges, we use entangled state machines
to enforce bidirectionally consistent rate control states. We
periodically detect changes in network capacity and control
the video encoding and forwarding units without intercepting
the original logic of the congestion control. (§III-D)
Design Overview. The rest of this section first introduces how
to decide the bitrate of the media traffic in both directions. To
this end, we first set up the metric to evaluate application
performance in §III-B, which comprehensively reflects overall
performance and user fairness in multiuser applications. With
the metric as our objective, we formulate and solve the target
rate allocation in §III-C. In this part, we not only show some
interpretable results in some simplified cases but also adopt
a nonlinear programming method to produce optimal rate
allocation results for general cases. Finally, we elaborate our
system design to complete the function of bidirectional rate
coordination in §III-D.

B. QoE Metrics Setup
An overarching problem is how to measure overall per-

formance. When the application involves multiple users, it
becomes difficult to tell whether the overall performance is
improved or impaired when users experience uneven perfor-
mance. For example, if five users get an enhanced experience
while three other users get a slightly degraded experience, may
we call this an improvement and how do we evaluate the level
of improvement or degradation?



To handle this issue, we select a utility function as the max-
imization objective for our optimization, based on Hoβfeld’s
QoE metrics for multiuser applications [33].

U = (1− ρ) ·Q(d) + ρ · F (Q(d)), (1)
where F (Q(d)) = 1− 2σ(Q(d)) (2)

In this formula, d is a vector that contains the downlink
bitrate for all users, Q(·) is a normalized QoE function of
downlink bitrates for a single user, scaling in the range of [0,1],
and σ(Q(d)) is the standard deviation of the QoE of all users.
The utility is a function of downlink bitrates as they directly
influence the users’ watching experience. Video streaming
applications may benefit from a higher upload speed, but
it should finally reflect in someone’s downlink bitrate. The
utility is composed of an average performance item (i.e., the
average QoE of each user Q(d)) and a fairness item (i.e.,
the fairness among all users F (Q(d))). As the QoE of each
user scales in [0,1], the average performance item scales in
[0,1]. The fairness item gets a value of 1 if all users get the
same QoE and zero standard deviation, and 0 if half users
have the worst QoE and the other half have the best QoE.
Hence, the fairness item also scales in [0,1]. ρ is a parameter
between 0 and 1, to tune the weight between the average
performance and users’ fairness. A greater ρ represents a
stronger emphasis on the user’s fairness. We use the standard
deviation in Hoβfeld metric to evaluate fairness instead of
the max-min fairness in Minerva [45], as it is less sensitive
to the inherent differences in network condition among users.
For example, if the available bandwidth of one user is much
lower than the others, it might be deterministic to the max-
min fairness and make the actual fairness among other users
indifferent in the metric.

The advantage of this utility definition is that it is in-
dependent of the underlying QoE function. As long as the
(single-user) QoE function is a normalized function, the above
utility function could compute a summarized QoE for multiple
users who participate in the application. Therefore, we do not
need a single-user QoE metric with accurate parameters but
only its trend, because the Q(·) needs to be normalized and
rescaled in [0,1]. Meanwhile, intuitively, the single-user QoE
would be positively related to its downlink bandwidth, so the
Q(·) function should be monotone non-decreasing. Combining
the above conditions, we use four types of Q(·) function as
shown in Tab.I: linear Qlin, logarithmic Qlog , concave square
Qsqrcc, and convex square Qsqrcv functions. All of them map
[0, Maximum application bitrate] to [0,1]. Their trends are
visualized in Fig.8, and we could also get other QoE functions
lying in the region between the short dotted and dash-dotted
lines by tuning the coefficient of Qsqrcc and Qsqrcv.

C. Target Allocation Analysis

We set up an optimization model to analyze the target uplink
and downlink bitrates. The model has a few assumptions:
• The streaming application involves video interactions among

multiple clients, and the clients have bidirectional volumetric
video streams.

• The uplink flow of each client is multicasted to other clients
by a server (e.g., the Selective Forwarding Unit (SFU) server
in videoconferencing or the relay servers of other streaming
platforms, all “server” hereinafter refers to this).

• The streams could only be transcoded to lower bitrate during
forwarding (i.e., the downlink bitrate is bounded by the sum
of other clients’ uplink). (see §II-B)

• The sum of the WLAN uplink and downlink bandwidths is
regarded as the available bandwidth. (see §II-B)
The formulation of the problem is as follows:

Variables: d, a vector that contains the downlink bitrate di
for each client i (application participants).

Constraints:
• (Positive bitrate selection) ∀i, di ≥ 0, i.e., the selected

downlink bitrate must be non-negative.
• (Available bandwidth bound) ∀i, Bi − di ≥ 0, i.e., the

selected downlink bitrate must be smaller than the capacity
of the half-duplex bottleneck Bi, so that the client could send
some uplink traffic without incurring network congestion.

• (Content source bound) ∀i, di ≤
∑

j ̸=i(min(Bj −
dj ,M/V )), i.e., the downlink bitrate of one user could
not exceed the streaming contents provided by other users.
M is the maximum application bitrate. V is the degree of
compressibility of one client’s video when it is played back
to another client (i.e., the original video streaming might be
downward transcoded). If we relax the consideration for the
maximum application bitrate, this constraint is equivalent to∑

i di ≤ S =
∑

i ̸=k,k=argmaxBk
Bi (3)

Objective: maximize the utility function U(d) in Eq.1.
Before analysis, we introduce several other necessary deno-

tations: n represents the number of users in total, ui represents
the uplink bitrate sent by client i, and max2nd(·) denotes the
second largest value among a certain range.

Results for a special case (ρ = 0 and the QoE function
takes Qlin). In this case, optimizing the utility function is
simplified into maximizing U′ = Σi min(di,Σj ̸=iuj), the
average receiving bitrate of all clients. The receiving bitrate
could roughly reflect the video quality and the watching
experience of the client. We first take the simplified version of
the content source bound constraint (Eq.3). Under this special
case, it is feasible for us to directly solve the optimization
problem. Since the solution varies depending on whether the
users are network-limited or application-limited, we discuss
the two cases separately and draw the following two conclu-
sions (proved in [40]).

Theorem 1 (Network-limited). If all clients have a half-duplex
bottleneck, the bandwidth allocations to achieve the maximum
average receiving bitrate of all clients (utility under the special
case) are max2nd(Bi) ≤

∑
i ui ≤ max(Bi) and di = Bi−ui.

The intuitive explanation for this conclusion is that in these
n users, there could only be one user with a non-saturated
bottleneck. If more than one user has nonsaturated bottlenecks,



the traffic between them could be increased to enhance the
overall receiving bitrate.

Theorem 2 (Application-limited). If there exists at least one
client with abundant network bandwidth (more than the sum
of all flows under the maximum bitrate), then the uplink
bandwidth of each client should be as large as possible to
improve the average receiving bitrate (utility under this special
case) of all clients.

Intermediate results (but with a certain degree of inter-
pretability) for general cases. For more general cases, we use
Lagrange multiplier approach [46] to solve the extreme points
of the problem. In this part, we take the simplified version of
the content source bound constraint (Eq.3).

We use the following denotations as the Lagrange multipli-
ers: two vectors λ and µ that each contain n elements, and
another variable η. These variables are equal to or greater than
zero. Then, we construct a Lagrange function (The S in the
following equations is defined in Eq.3):

L(d, λ, µ, η) = U(d) +
∑

i(λidi + µi(Bi − di)) + η(S −
∑

i di)

with inequality constraints:

∀i, di ≥ 0; ∀i, Bi − di ≥ 0; S −
∑

i di ≥ 0

Based on the Karush-Kuhn-Tucker (KKT) conditions for the
Lagrange multiplier approach with inequality constraints [47],
we could get:

∀i,∇di
= ∇Udi

(d) + λi − µi − η = 0;

∀i, λidi = 0; ∀i, µi(Bi − di) = 0; η(S −
∑

i di) = 0

From solving the KKT conditions, we could know that the
downlink bitrate di for each user i in the extreme points could
be one of the following five potential values:

1⃝di = 0; 2⃝di = Bi; 3⃝di = S −
∑

j ̸=i di; 4⃝∇diQ(di) = 0;

5⃝Q(di) = Q(d) + 1−ρ
2ρ · n

n−1 · σ(Q(d))

In these five values, 1⃝ 2⃝ are trivially drawn from the
problem constraints, 3⃝ is equivalent to the special case result
in Thm. 1. 4⃝ is also trivial since the Q(·) function is usually
monotonically increasing, as we discussed in §III-B. 5⃝ is the
one that comprehensively reflects the components in the utility
function (Eq.1). An intuitive understanding for 5⃝ is that if
none of the users is network-limited, di for all users should
satisfy 5⃝ and would result in the same d as the maximum
application bitrate for all users. In practice, when the common
situation is that some users are network-limited, selecting the
same bitrate for all users would make the bitrate very low. In
this case, users must balance between maintaining their own
receiving bitrate and providing quality uplink video for others
by satisfying either 3⃝ or 5⃝.

However, there are too many extreme points (5 for each
client as above, 5n in total) that could be solved from the KKT
conditions. It is hard to enumerate all these possible solutions
and comparatively validate them. Thus, we still need a scalable
method to get the optimal solutions for our problem.
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Optimization method for general cases. Finally, to get the
optimum solutions, we adopt the Sequential Least SQuare
Programming (SLSQP) algorithm [48] to get our optimal
bitrates. The SLSQP algorithm can handle nonlinear object
functions (with quadratic problems with second-order approx-
imation) and various constraints (with linearized constraints
approximation), which applies to our problem. The algorithm
is then able to converge to the optimal point.

D. System Design

To make it feasible in real-world deployment, we now
propose the system to realize our bidirectional bandwidth
coordination policy. We outline the system design in Fig.9(a).
Originally, the media would be first encoded on the client
side and then sent out based on the speed under congestion
control. The media traverse the network and are received by
the server. The media forwarding unit would then process the
received media and forward them to other clients under server-
side congestion control. However, this would not achieve
the desired application performance as we have analyzed.
To achieve higher overall performance, Plum adds several
controlling modules atop these existing mechanisms.

Plum has three main logical modules: the capacity detection
module, coordinated rate optimization module and bitrate
state control module, as shown in the red box in Fig.9(a).
Among them, the capacity detection and coordinated rate
optimization modules are located on the server, while the
bitrate state control module is located on both the client and
the server. The workflow performs as follows: The capacity
detection module regularly detects the capacity by getting
bandwidth estimations from the congestion control module,
and triggers the coordinated rate optimization module to
recompute the target (bidirectional) bitrates if obvious capacity
changes are detected to take place. Then, the coordinated rate
optimization module analyzes with the new capacities and
provides the updated target bitrates. The server notifies the



client with the target bitrate rt. Based on these new bitrate
decisions, the clients and the server would update their states
by the bitrate state control module in an entangled way. On
the client side, the bitrate state control would control the
encoding bitrate in the media encoder. On the server side, the
bitrate state control would guide the media forwarding unit to
decide the transcoding ratio of the media to be forwarded.
With more than one user participating in the application,
all modules run their logic independently for each client
except for the coordinated rate optimization module. There
is only one centralized coordinated rate optimization module
that decides the bitrates for all clients with an overarching
global view. In the following, we introduce the design and
implementation of the three main logical modules of Plum:

Capacity detection. The capacity detection module periodi-
cally checks the network capacity by getting the bandwidth
estimation from the congestion control (e.g., rate-based con-
gestion control algorithms like BBR [28] would explicitly
make a rough estimation of the available network bandwidths).
The server estimates the downlink bandwidth while the client
estimates the uplink bandwidth and notifies the server by
application layer messages (or piggybacked by the media
traffic). This module then takes the sum of the uplink and
downlink bandwidth estimation as the capacity of the WiFi
bottleneck. Then, we compare the real-time capacities with
previous capacities and report a change if the capacity of
any client reveals an obvious change. In our implementation,
our detection period is set as 5 seconds. We define “obvious
change” as changes in capacity compared to the previous
capacity exceeding 20%.

Coordinated rate optimization. We set up a Python solver
that calls the optimize.minimize API [49] in SciPy to
perform the optimization. We use Linux IPC (Inter-Process
Communication) sockets to communicate with the Python
solver to feed the inputs and get the optimized bitrates. Aside
from the convenience of getting a global view of all the clients,
putting this optimization module on the server also enables us
to utilize stronger computation resources on the servers.

Bitrate state control. After deciding the target bitrates, we
further need state machines to control the media encoding or
processing and selective forwarding at both the client and the
server in an entangled manner. The transitions of the state
machine are only triggered on the server and are notified to the
clients. We first define Natural as a host encoding and sending
media based on rates decided by the host’s own congestion
control algorithm, and Constrained as a host encoding and
sending media on a settled rate (which is computed by Plum’s
optimization and is lower than its own congestion control rate).
As shown in Fig.9(b), there are three states in total: (I) both
the client and the server are in the Natural state, (II) the client
is Constrained and the server is Natural, and (III) the server is
Constrained and the client is Natural. When capacity detection
determines an obvious change in capacities, the coordinated
rate optimization module provides a set of new target bitrates.
We first check whether the results are valid (i.e., satisfying all

the constraints in §III-C). If the results are valid, we go to
state II if the bitrate of a client should be reduced based on
the target bitrates, and go to state III if the forwarding bitrate
of the server should be reduced (the state transitions on the
right side of Fig.9(b)). If the results are invalid, we go back to
the natural state I (the transitions on the left side of Fig.9(b)).
To accelerate the rate convergence, when a host transits from
Natural state to the Constrained state, we store the previous
bitrate, and immediately restore to this historical rate when
the host is switched back to the Natural state. In practice, we
first complete the state transitions at the server, and send rt to
the client if the client’s new state is Constrained and send 0
if Natural. The client would then transit its state accordingly,
thus ensuring the consistency between server and client. The
overhead of coordination notification is one float field in the
application protocol header.

IV. EVALUATION

In this section, we present our evaluation of Plum from
different aspects including performance (§IV-A,§IV-B,§IV-C),
user fairness and sensitivity (§IV-D) with NS-3 simulations.
We finally present testbed experiments (§IV-E).

A. Performance Gain

First, we evaluate the performance gains achieved by Plum
for a topology where all clients are connected to a central
server following the SFU WebRTC architecture, where the
access network of each client is independent (see in Fig.10(a))
using NS-3 simulations.

Experiment Setup. We evaluate Plum for two different real-
world WiFi traces: Tr-Game [50] (from WiFi gaming users)
and Tr-Restaurant [51] (from a WiFi user in a crowded restau-
rant). In our experiments, each client randomly selects a trace
from the trace set and uses it to set the link bandwidth. In the
transport layer, we establish TCP connections between clients
and the server, and use BBR [28] as the congestion control
algorithm, as it is a widely adopted low-latency congestion
control algorithm in the real world [52]. The frame rate is set
to 20 fps. We set ρ in Eq.1 to 0.5. We use the Qlin QoE
function as default. We vary the outbound bandwidth of the
server from 100 Mbps to more than 1000 Mbps.

We compare Plum to the following baseline algorithms:
• TACK [44]: a flow optimization method with adaptive ACK

frequencies. The maximum delayed ACK count is set to 16,
and other parameters follow the original paper.

• LastN [53]: an application optimization method, where
the server only forwards the streams of the latest speakers
and pauses the stream from an inactive client to spare
bandwidth. The paused user resumes uploading content with
a probability of 1/3.

• Vanilla: a baseline without special optimization.
In Fig.11(a), we present the average downlink bitrate for the

users for the Tr-Game trace. We see that Plum can improve the
average downlink bitrate by up to 48.0% for Tr-Game traces
(and 58.5% for Tr-Restaurant in Fig.11(b)), even compared to
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Figure 11: Plum’s bitrate performance in trace-driven experiments

the best among the baselines. In fact, as the number of clients
increases, the improvement increases, since more clients would
amplify the benefit of unfair bidirectional bandwidths.

Because the bandwidth of the server is limited, the aver-
age downlink bitrate would eventually stop increasing and
gradually drop as the server becomes the bottleneck. We see
similar trends for the Tr-Restuarant trace in Fig.11(b). With
a larger server bandwidth, the bottleneck at the server will
occur after a large number of clients. The highest downlink
bitrate is reached at 8 for the Tr-Game trace and at 16 under
Tr-Restaurant trace.

To avoid clutter, we only plot the results for 100 Mbps
server bandwidth and enough server bandwidth for baseline
TACK and LastN in Fig.11. Their performance when the
server bandwidth is 300 Mbps and 500 Mbps is bounded by
their performance with enough server bandwidth. When the
server bandwidth is 100 Mbps, all the policies are restricted
by the bottleneck at the server and have similar performance.
When there is enough server bandwidth, the performance for
TACK and LastN are similar to Vanilla. TACK works well
under unidirectionally volumetric scenarios where reducing the
ACK frequency reduces the medium acquisition from the other
direction. However, when there is constant data flow from the
opposite direction, it performs slightly worse than Vanilla be-
cause slower ACKs reduce the send rate. A purely application-
layer optimization like LastN pauses inactive clients to save
bandwidth can achieve some improvement, but is still less
effective than bandwidth coordination that is aware of both
the network and the application requirements.

To see the real-time bitrate distribution, we present the Cu-
mulative Distribution Function (CDF) of the highest received
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Settings Simulation Testbed
IEEE 802.11 standard 802.11ac 802.11ac

Physical model YANS [54] real WiFi channel
Frequency band 5GHz ISM band [55]
Access method DCF [17]
WiFi fairness per-station fairness

MAC rate adaptation Ideal4 Minstrel [56]5

Mobility model 2D random walk static
Mobility range 30 meter square –

Table II: Wireless and mobility settings in our experiments

bitrates among all sources (i.e., each client is supposed to
receive flows from all the other clients) in Fig.12. There are
8 clients in total, with enough server bandwidth and Tr-Game
traces (the best operating point). Plum improves 90%ile (i.e.
90th percentile) bitrate by more than 49.8%; the proportion
exceeding 5 Mbps is improved by 2.6×.

B. Performance with Shared Channel

In practice, we do not expect all clients to have direct and in-
dependent access to the server. For example, it is also possible
for more than one client to access the server through the same
AP (and hence share the same wireless channel). To consider
these cases, we use the topology in Fig.10(a) where 2 of the
Clients are in the same WiFi Basic Service Set (BSS). We
present the bitrates of these two clients sharing the same BSS
(shared) and the bitrates of other clients (independent)
separately in Fig.13. While the improvement gain achieved by
Plum is smaller compared to that for the clients connected
to different APs, but we can still achieve up to 33.7% (for
the sharing BSS clients) and 26.1% (for other clients) bitrate
improvement compared to the state-of-the-art algorithms.

C. Performance under Mobility

As our trace-driven experiments above do not incorporate
WiFi physical and MAC layer implementations (e.g., modula-
tion and coding scheme selection), we ran further experiments
incorporating the NS-3 WiFi module to evaluate Plum under
user mobility. We use the topology in Fig.10(b) with three
wireless / wired users, with a variable number of WiFi clients.
When there is more than one WiFi client, they are put in
different BSSs. The bandwidth of all wired links is set to
50 Mbps. The other wireless settings are shown in Tab.II.
Client 1 (a WiFi client) moves by the mobility model in Tab.II
and Client 2,3 are stationary. We run each session for 20
minutes and use 10 seeds to eliminate randomness.

In Fig.14(a), we can see that Plum improves the 90%ile
user bitrate by 3.8×, and improves the 10%ile user bitrate

4The ideal rate adaptation selects the best modulation mode with out-of-
band information.

5Minstrel in the default rate adaptation algorithm in Linux kernel.
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by 25% compared to Vanilla when there is one WiFi user.
Fig.14(b) shows that Plum increases the average bitrate by
up to 65.1% when there is one WiFi user and 12.3% when
there are two. The increase is more significant when there is
one WiFi user because wired clients have abundant bandwidth
to fully exploit the benefit of the increased uplink bitrate of
Client 1, while Client 2 might also be network-limited when
it is also a WiFi user. It is not surprising that our performance
gains are reduced because the bandwidth varies much more
compared to the static scenarios due to user mobility.

D. Fairness and Sensitivity Analysis

Fairness. We present Plum’s impact on the worst-performing
user in Fig.14(c), i.e., the ratio of the receiving bitrate of the
worst-performing user under Plum against without Plum. We
see that all Plum variants improve the performance of the
worst-performing user (above the orange line). This is due to
the cases when two other users increase their upload bitrates to
improve the worst user’s bitrate significantly. We also calculate
the Jain’s Fairness Index (JFI) [57] for all users. As shown in
Fig.14(d), the JFIs of all Plum variants exceed 0.79.

Sensitivity of QoE functions. Among the four types of QoE
functions, Plum with Qsqrcv has the highest JFI (0.84). This
is because Qsqrcv is the only convex function in the four
QoE functions in Tab.I, making the QoE value for a user
grows relatively slowly at the start with the increase of bitrate.
Therefore, Plum would prefer to first enhance the fairness
item in Eq.1 before devoting itself to improving the average
performance for every user. On the contrary, Qlog would prefer
to improve performance first, which also explains why the
performance with Qlog is often the best in Fig.14.

Parameter sensitivity of ρ. We also test the sensitivity of
the parameter ρ in the utility function (Eq.1). As shown in
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Fig.15(a), with the increase of ρ, the normalized performance
term in Eq.1 would gradually decrease and the fairness term
would gradually increase. This is in line with our expectations.
The range of change is around 0.06 and 0.08 in absolute value
for the performance term and fairness term correspondingly.

E. Testbed Experiments

Finally, we evaluate Plum in a real testbed environment with
the following settings. Our testbed topology (Fig.10(c)) has a
desktop and several Ubuntu servers. The desktop (Desktop 1)
accesses the network via WiFi and is one of the clients. The
router behind the WiFi AP is in the same campus network as
the Ubuntu servers. The servers are in the same intranet and
have gigabit NICs. Server 1 acts as the application server,
while other servers (Server 2...N) act as the clients in the
application and are located in a different rack. Laptop 1
represents another user that shares the same wireless network
with our client. Laptop 1 sends a constant 10 Mbps Iperf TCP
flow to another server (not shown in Fig.10(c)). Desktop 1
is equipped with a TP-LINK TL-WDN5200H wireless card.
The WiFi router model is Tenda AX1803. Server 1 is a Dell
PowerEdge R730 server with 16 CPU cores. The desktop
accesses the Internet through the WiFi router. Our servers
are Dell PowerEdge R740 with 80 CPU cores. We implement
Plum in Salsify [58], [59], a state-of-the-art video streaming
framework that implements video codec in a functional style
and makes it easy to change the coding bitrate.

We first test the bandwidth-yielding behavior in a pair of
uplink and downlink flows between the desktop and a Ubuntu
server. We halve the downlink bitrate and observe a 2.8×
increase in uplink throughput (Fig.16(a)). We then let all
clients send streams to each other. Plum could improve the
average goodput by 15.9% under 5 clients (Fig.16(b)).

We also evaluate the video quality of Plum in terms of the
Peak Signal-to-Noise Ratio (PSNR). As shown in Fig.16(c),
Plum increases the average PSNR of all users. The benefit
exceeds the decrease of downlink bandwidth of the WiFi user.

We present the distribution of the real-time downlink bitrate
in Fig.16(d). The results show that Plum improves the median
bitrate by 37.3% among all users (full-labeled curves). For
all wired users, the portion of bitrate above 10 Mbps increases



Factors Mechanisms
Airtime WiFi fairness control

BER & Coding rate MAC-layer rate adaptation
MAC frame size Layer 4/5 rate control

Table III: Key influential factors to WiFi bandwidths, and
corresponding mechanisms that control them.

by 15%. The bitrate of the self-sacrificing (WiFi) user is also
always > 6 Mbps (the left end of the Plum(full) curve),
not impacting the basic watching of the worst-case user.

We further evaluate the optimization latency of Plum.
We repeat 50 times to eliminate randomness. As shown in
Fig.15(b), the optimization latency would not exceed 100 ms
for 20 participants in the application. Optimization latency
would increase linearly with the number of participants, which
means that the latency would not exceed 1 second even with
200 participants. This is acceptable since the adjustment to the
encoding bitrate would not be very frequent (second level).

V. RELATED WORK

Key influential factors to the throughput of a flow in
WLAN. The IEEE 802.11 Medium Access Control (MAC)
layer uses the Carrier-Sense Multiple Access with Collision
Avoidance (CSMA/CA) access method to handle transmission
collision problems in WLAN [16]. It uses carrier sense func-
tion (e.g., Network Allocation Vector (NAV) in Distributed
Coordination Function (DCF) access method) to indicate the
duration of the MAC frame a station needs to transmit, and
uses the backoff mechanism to disalign the transmission timing
of different users to avoid collisions. Under these mechanisms,
a station or an AP gets certain time periods (airtime) to
send their data [60]. The airtime apportioned to each user is
determined by the WiFi fairness control. During the airtime,
the bitrate error rate (BER) of the channel and the modulation
and coding rates would also affect throughput. Modulation
and Coding Scheme (MCS) with higher rates might suffer a
higher BER, so MAC-layer rate adaptations [56], [61]–[67]
tune the MCS to seek a balance and maximally exploit the
channel capacity. MAC layer rate adaptation is orthogonal to
our scope since selecting a sub-optimal MCS only reduces
the bandwidth during the sender’s airtime, but cannot yield
the bandwidth to the other direction. Finally, the MAC frame
size would also impact the real bandwidth, as a larger frame
size would raise the temporal proportion of data transmission
relative to accessing overhead (e.g., the inter-frame spaces).
The higher the data rates from the transport layer and above
(Layer 4/5), the larger frames could be packed at the MAC
layer. (See summary in Tab.III)

Flow prioritization in the MAC layer. IEEE 802.11e stan-
dard introduces the Enhanced Distributed Channel Access
(EDCA) method [68], [69], which offers prioritized Quality of
Service (QoS) support for downlink flows in different Access
Categories (AC). EDCA achieves this by configuring different
contention windows (CW) and retry factors for each AC in
the WiFi AP. However, EDCA only offers QoS support for
downlink flows, lacking QoS support between uplink and
downlink flows. Another optimization on WiFi AP is the

bidirectional DCF, which offers higher bandwidth to downlink
traffic by piggybacking data packets after ACKs on AP [70]
or reducing backoff counter or minimum CWs for APs and
stations [71], [72]. The bidirectional DCF is designed for old-
fashioned applications with mice uplink traffic. It could only
fixedly give more bandwidths to the downlink flows and could
not flexibly coordinate uplink and downlink bandwidths.

VI. DISCUSSION

Bidirectional bandwidth coordination for other application
scenarios. In this paper, we establish our design on the
multiuser video streaming scenarios. Single-user interactive
streaming applications like remote desktops might also want
unfair bidirectional bandwidths. For example, remote desktop
users need to deliver user instructions (e.g. program com-
mands) and dependent files, before the remote desktop server
can compute and generate the reactive screen display contents.
If the uplink flow is delivered at low rates, the expected
response would be further postponed. Bidirectional bandwidth
coordination could prioritize the fast delivery of the uplink
flows and make the interactions more seamless. We leave
further study on these scenarios as our future work.

Cooperation with other congestion control algorithms. In
our experiments, we integrate Plum with BBR. For other rate-
based congestion control algorithms, we could also take its
delivery rate as a bandwidth estimation. For congestion win-
dow (CWND)-based congestion control (e.g., CUBIC [27]),
the delivery rate could be approximated by dispensing the
CWND over an RTT. As we outlined in §II-C, the congestion
control algorithm is supposed to work well with Plum as long
as it can match the rate to the available bandwidth and timely
grab increased bandwidth.

VII. CONCLUSION

We present Plum, a bandwidth coordination mechanism that
can flexibly change the bandwidth share between the uplink
and downlink streams under WLAN bottlenecks. Plum can
significantly improve the performance of bidirectionally vol-
umetric video streaming applications while maintaining user
fairness. Plum is easily deployable and could be generalized to
various streaming applications. With the evolution of network
applications, we believe that it is important to revisit the hid-
den assumptions of existing network mechanisms to address
the challenges arising from next-generation applications. Our
paper represents a first step in this effort, by considering the
half-duplexity of the WiFi bottleneck to improve the QoE for
bidirectionally volumetric video streaming applications.
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“Ending the anomaly: Achieving low latency and airtime fairness in
wifi.” in USENIX Annual Technical Conference, 2017, pp. 139–151.

[61] G. Holland, N. Vaidya, and P. Bahl, “A rate-adaptive mac protocol
for multi-hop wireless networks,” in Proceedings of the 7th annual
international conference on Mobile computing and networking, 2001,
pp. 236–251.

[62] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly, “Opportunistic
media access for multirate ad hoc networks,” in Proceedings of the 8th
annual international conference on Mobile computing and networking,
2002, pp. 24–35.

[63] D. Qiao, S. Choi, and K. G. Shin, “Goodput analysis and link adap-
tation for ieee 802.11 a wireless lans,” IEEE transactions on Mobile
Computing, vol. 1, no. 4, pp. 278–292, 2002.

[64] I. Haratcherev, K. Langendoen, R. Lagendijk, and H. Sips, “Hybrid rate
control for ieee 802.11,” in Proceedings of the second international
workshop on Mobility management & wireless access protocols, 2004,
pp. 10–18.

[65] M. Lacage, M. H. Manshaei, and T. Turletti, “Ieee 802.11 rate adapta-
tion: a practical approach,” in Proceedings of the 7th ACM international
symposium on Modeling, analysis and simulation of wireless and mobile
systems, 2004, pp. 126–134.

[66] J. Kim, S. Kim, S. Choi, and D. Qiao, “Cara: Collision-aware rate
adaptation for ieee 802.11 wlans.” in Infocom, vol. 6, 2006, pp. 1–11.

[67] S. H. Wong, H. Yang, S. Lu, and V. Bharghavan, “Robust rate adaptation
for 802.11 wireless networks,” in Proceedings of the 12th annual

international conference on Mobile computing and networking, 2006,
pp. 146–157.

[68] “Ieee standard for information technology–local and metropolitan area
networks–specific requirements–part 11: Wireless lan medium access
control (mac) and physical layer (phy) specifications - amendment 8:
Medium access control (mac) quality of service enhancements,” IEEE
Std 802.11e-2005 (Amendment to IEEE Std 802.11, 1999 Edition (Reaff
2003), pp. 1–212, 2005.

[69] H. Wu, X. Wang, Q. Zhang, and X. Shen, “Ieee 802.11e enhanced
distributed channel access (edca) throughput analysis,” in 2006 IEEE
International Conference on Communications, vol. 1, 2006, pp. 223–
228.

[70] N. S. Nandiraju, H. Gossain, D. Cavalcanti, K. R. Chowdhury, and D. P.
Agrawal, “Achieving fairness in wireless lans by enhanced ieee 802.11
dcf,” in 2006 IEEE International Conference on Wireless and Mobile
Computing, Networking and Communications. IEEE, 2006, pp. 132–
139.

[71] J. Jeong, S. Choi, and C.-k. Kim, “Achieving weighted fairness between
uplink and downlink in ieee 802.11 dcf-based wlans,” in Second Interna-
tional Conference on Quality of Service in Heterogeneous Wired/Wire-
less Networks (QSHINE’05). IEEE, 2005, pp. 10–pp.

[72] M. Bottigliengo, C. Casetti, C.-F. Chiasserini, and M. Meo, “Smart
traffic scheduling in 802.11 wlans with access point,” in 2003 IEEE
58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.
03CH37484), vol. 4. IEEE, 2003, pp. 2227–2231.


