
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021 723

Practically Deploying Heavyweight Adaptive Bitrate
Algorithms With Teacher-Student Learning

Zili Meng , Graduate Student Member, IEEE, Yaning Guo, Yixin Shen , Jing Chen, Chao Zhou, Minhu Wang,

Jia Zhang, Mingwei Xu , Senior Member, IEEE, Chen Sun , and Hongxin Hu , Member, IEEE

Abstract— Major commercial client-side video players employ
adaptive bitrate (ABR) algorithms to improve the user quality
of experience (QoE). With the evolvement of ABR algorithms,
increasingly complex methods such as neural networks have been
adopted to pursue better performance. However, these complex
methods are too heavyweight to be directly deployed in client
devices with limited resources, such as mobile phones. Existing
solutions suffer from a trade-off between algorithm performance
and deployment overhead. To make the deployment of sophisti-
cated ABR algorithms practical, we propose PiTree, a general,
high-performance, and scalable framework that can faithfully
convert sophisticated ABR algorithms into decision trees with
teacher-student learning. In this way, network operators can
train complex models offline and deploy converted lightweight
decision trees online. We also present theoretical analysis on
the conversion and provide two upper bounds of the prediction
error during the conversion and the generalization loss after
conversion. Evaluation on three representative ABR algorithms
with both trace-driven emulation and real-world experiments
demonstrates that PiTree could convert ABR algorithms into
decision trees with <3% average performance degradation.
Moreover, compared to original deployment solutions, PiTree
could save considerable operating expenses for content providers.

Index Terms— Adaptive bitrate streaming, practicality, client-
side implementation, decision tree.

I. INTRODUCTION

IN RECENT years, video streaming traffic plays a promi-
nent role in Internet traffic [2]. Meanwhile, online video

Manuscript received February 25, 2020; revised August 22, 2020 and
October 27, 2020; accepted December 13, 2020; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor S. Rao. Date of publication
January 22, 2021; date of current version April 16, 2021. This work was
supported in part by the National Natural Science Foundation of China under
Grant 61625203 and Grant 61832013 and in part by the National Key Research
and Development Program of China under Grant 2017YFB0801701. A previ-
ous version of this work has been presented in ACM International Conference
on Multimedia 2019 (MM’19). (Corresponding author: Mingwei Xu.)

Zili Meng, Yaning Guo, Yixin Shen, Jing Chen, Minhu Wang, and
Chen Sun are with the Institute for Network Sciences and Cyberspace,
Tsinghua University, Beijing 100084, China (e-mail: zilim@ieee.org;
gyn17@mails.tsinghua.edu.cn; shen-yx18@mails.tsinghua.edu.cn; j-chen20@
mails.tsinghua.edu.cn; wangmh19@mails.tsinghua.edu.cn; c-sun14@
tsinghua.org.cn).

Chao Zhou is with Beijing Kuaishou Technology Company Ltd., Beijing
100085, China (e-mail: zhouchaoyf@gmail.com).

Jia Zhang and Mingwei Xu are with the Institute for Network Sciences
and Cyberspace, Tsinghua University, Beijing 100084, China, also with
the Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China, and also with the Beijing National Research Center for
Information Science and Technology, Tsinghua University, Beijing 100084,
China (e-mail: jia-zhan18@mails.tsinghua.edu.cn; xumw@tsinghua.edu.cn).

Hongxin Hu is with the Department of Computer Science and Engineer-
ing, University at Buffalo, The State University of New York, Buffalo,
NY 14260 USA (e-mail: hongxinh@buffalo.edu).

Digital Object Identifier 10.1109/TNET.2020.3048666

TABLE I

REPRESENTATIVE ABR ALGORITHMS IN RECENT YEARS

clients have increasingly higher demands on the video quality
of experience (QoE) [3], which directly correlates with content
provider revenue [4]. Therefore, as presented in Table I,
a series of adaptive bitrate (ABR) algorithms are proposed
to optimize the video quality, some of which have already
been used by commercial content providers [5], [6]. These
algorithms usually run on client-side video players that dynam-
ically select a bitrate based on network conditions. ABR
algorithms have to handle complicated situations, including
different QoE demands [5], [7], high variation of network
throughput [3], and the cascading effect between actions [3].
Therefore, sophisticated algorithms (e.g., Integer Program-
ming [8], Lyapunov optimization [5], and neural networks [3],
[7], [9]) are adopted to improve ABR performance.

However, the expensive computation overhead of increas-
ingly complex ABR algorithms prevents them from traditional
in-player implementations [3], [8]. Notably, a sharply increas-
ing number of users choose to play videos through smart
TVs and mobile devices such as pads or cellphones [9]. The
latest statistics indicate that mobile devices account for 62%
of online video views in 2018, and this number is increasing
rapidly [2]. These mobile devices often have very limited com-
putation resources, which cannot satisfy the resource require-
ments of solving complex optimization problems (§II-B).
Thus, it is difficult to directly integrate ABR algorithms into
HTML pages and implement them in client-side players [10].
The situation will become worse when pursuing higher per-
formance with more complex optimizations in future.

To address this problem, ABR algorithm designers pro-
pose many solutions, which, however, fail to achieve high
performance and scalability at the same time. Two main
categories of solutions include (§II-B): (i) Compromising
performance to reduce overhead. RobustMPC [8] provides
an online version of its integer programming-based algorithm
(FastMPC) by enumerating some situations and constructing
a solution table for online lookup. FastMPC, however, is a
case-specific method for RobustMPC and drastically degrades
the performance even below many strawman baselines [8].
(ii) Offloading computation to remote ABR servers. Many
recent efforts [3], [9] suggest offloading the heavyweight

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 15:33:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2009-7180
https://orcid.org/0000-0002-7228-4968
https://orcid.org/0000-0002-4847-4585
https://orcid.org/0000-0003-2480-2350
https://orcid.org/0000-0001-8710-247X

724 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

computation to remote ABR servers, requiring video clients
to send requests to the ABR servers when they need to make
decisions. The content providers, however, have to introduce
and maintain additional servers to provide ABR optimization
services specifically, which significantly increases operating
expenses (OPEX). Therefore, we are motivated to enable the
large-scale deployment of heavyweight ABR algorithms.

Inspired by recent advances in interpreting complicated
models [18]–[20], our key observation is that the offline design
and online deployment of ABR algorithms can be optimized
separately. The reason behind this observation is because some
lightweight representations of algorithms (e.g., decision trees)
have similar expressiveness compared to those complex repre-
sentations [20]. Therefore, we could implement sophisticated
ABR algorithms in practice by decoupling offline design and
online deployment. Algorithm developers can still design and
train any ABR algorithms as they wish, and we can convert
the finetuned models into other lightweight representations to
reduce the online computation overhead.

Based on this observation, we propose PiTree, a general,
high-performance, and scalable framework to bridge the gap
between offline design and online deployment of ABR algo-
rithms using decision trees. The key idea of PiTree is to
convert sophisticated offline algorithms into lightweight online
decision trees to achieve high performance and implementa-
tion scalability simultaneously. Due to the complex decision
space of ABR algorithms (§III-A.2) and the cascading effects
between actions [3], however, we are challenged to faithfully
and efficiently convert sophisticated ABR algorithms into
decision trees. In response, PiTree adopts recent advances
in the machine learning community, namely teacher-student
learning [20], to faithfully convert ABR algorithms to decision
trees with negligible performance degradation. The original
ABR algorithm acts as a teacher who continuously corrects
the actions of the student decision tree. Moreover, to make
network operators confident about the online deployment of
decision trees, we provide a theoretical analysis of PiTree
and guarantee the upper bound of the optimization loss and
generalization loss of the performance.

We implement PiTree over three state-of-the-art ABR algo-
rithms (RobustMPC [8], Pensieve [3], and HotDASH [9]).
We evaluate the performance of PiTree with both existing
datasets and new traces and videos collected by us, together
with several days of real-world experiments. Our evaluation
shows that the performance degradation of the decision tree
against original ABR algorithms is maintained within 3% on
different network traces (§VI-A). More importantly, PiTree
could reduce the HTML page size by around 10× and decision
latency by up to three magnitudes, and save considerable oper-
ating expenses (§VI-B). Further evaluation results also demon-
strate the robustness and generalization ability of PiTree on
various traces with different settings (§VI-C).

In summary, we make the following contributions:

• We illustrate the problem of practically deploying sophis-
ticated ABR algorithms for content providers and moti-
vate the problem with concrete server-based experiments.

• We present PiTree, a general, high-performance, and
scalable framework for the practical deployment of ABR
algorithms using decision trees.

• We analyze the conversion procedure of PiTree and pro-
vide two theoretical upper bounds of the prediction error
and generalization loss of PiTree during the conversion.

• We evaluate PiTree with emulations and real-world
implementations and demonstrate that PiTree could con-
vert state-of-the-art ABR algorithms into lightweight
decision trees with negligible performance degradation.

To the best of our knowledge, PiTree is the first general
framework to make it practical to deploy state-of-the-art
sophisticated ABR algorithms on client-side video players.
The source codes and datasets of PiTree are available at
https://transys.io/pitree/. We believe that PiTree will accelerate
the deployment of new sophisticated ABR algorithms.

Roadmap: We introduce the background and motivations
and articulate our design choice of PiTree in §II. The decision
tree generation algorithm is presented in §III. We then propose
theoretical bounds for the performance of PiTree in §IV and
introduce the implementations of PiTree with our dataset in
§V. Evaluation results with trace-driven emulation and real-
world experiments are presented in §VI. We further discuss
the potential directions and limitations of PiTree in §VII and
introduce the related research efforts in §VIII.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce the background of ABR
streaming (§II-A), then motivate the design of PiTree with
illustrative experiments (§II-B).

A. ABR Streaming

Dynamic Adaptive Streaming over HTTP (DASH) [10] is
the predominant method for streaming video delivery today.
In DASH systems, each video is partitioned into chunks (e.g.,
4-second blocks) and each video chunk is encoded in multiple
bitrates. A higher bitrate indicates higher video quality. When
a user plays a video on the client-side player, the ABR
algorithm decides the appropriate bitrate to download for the
next chunk and downloads the video chunk into the playback
buffer on video clients. It is well-established that a higher
QoE follows from (i) higher average video bitrate, (ii) fewer
rebuffering events, and (iii) better video bitrate smoothness [3],
[7], [9]. These factors, however, are often conflicting with
each other in the real world. For example, in a network
with highly fluctuating throughput, a conservative policy to
minimize rebuffering events may lead to lower average bitrate.
Meanwhile, the instability of network conditions makes a pre-
cise prediction for future bandwidths challenging. Moreover,
bitrate selection for a single chunk will affect the future states
of video players, which is known as the cascading effect of
ABR systems [3]. These factors make the optimization of QoE
challenging.

Existing solutions have already achieved significant
improvements in addressing the conflicts above. As summa-
rized in Table I, recent research efforts include buffer-based
methods [5], [14], which make decisions based on video
player buffer occupancy, rate-based methods [12], [13], which
make decisions with network throughput information, and
hybrid methods [8], [15], utilizing observations from network
and playback buffer. Especially with the rapid development

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 15:33:55 UTC from IEEE Xplore. Restrictions apply.

MENG et al.: PRACTICALLY DEPLOYING HEAVYWEIGHT ABR ALGORITHMS WITH TEACHER-STUDENT LEARNING 725

of machine learning, many recent algorithms employ neural
networks [3], [9] to further improve the QoE. However, since
there still exists a gap between current ABR algorithms and
the offline optimal solutions [3], [4], further efforts on ABR
algorithms are still needed for better performance. As an exam-
ple, the academic community continuously holds competition
seeking better QoE algorithms [21]. In summary, increasingly
optimized methods have been (and are going to be) proposed
for better performance in the competition of QoE [21].

B. Motivation

On the way of improving the performance of ABR algo-
rithms, the complexity of algorithms also goes up. Specifically,
sophisticated algorithms are difficult to be practically deployed
on the client or server side due to the following reasons.

1) Client-Side Implementation: As the conventional imple-
mentation solution for existing ABR algorithms [5], [6],
implementing the heavyweight ABR models on resource-
limited clients confronts a series of challenges. First, for
neural network-based computational models [3], [9], when
users watch videos from web browsers, loading heavyweight
computation models will drastically increase the page load
time by several seconds (§VI-B.1), which might make impa-
tient users leave the page [22]. Second, for optimization-based
models, solving complex optimizations on end devices with
constrained computation resources will introduce excessive
delay by up to 1000× compared to heuristic-based base-
lines (§VI-B.2). For example, the long decision latency of
RobustMPC [8] sometimes might even exceed the video chunk
lengths (often 2 to 4 seconds [11]) and severely degrade
the QoE of videos. Moreover, with the recent development
of live streaming [21], shorter chunks (and even frame-level
decisions) will exacerbate the problem. Finally, additional
software plugins (e.g., TensorFlow [23]) might be required
on video clients, which further poses barriers for large-scale
deployments [24]. Therefore, the deployment practicality of
ABR algorithms severely hinders the exploration of better
ABR algorithms.

Therefore, to deploy sophisticated models on the client
side, operators have to compromise performance to reduce
overhead. RobustMPC [8] proposed to pre-compute solutions
for all network states, construct results into a table, and look
up the table when running online. This technique is known
as FastMPC. However, the performance degradation brought
by the simplification is also drastic. FastMPC could lead to a
performance drop of up to 30%, which is worse than many
strawman baselines [8]. Meanwhile, as the solutions are case-
specific, ABR designers still have to consider how to simplify
and relax their designs with the practicality of online imple-
mentation and performance maintenance in mind [8], [25].

2) Server-Side Implementation: Due to the complexity
of recent sophisticated ABR algorithms, many recent solu-
tions [3], [4], [8], [9], [24] offload the heavyweight online
computation tasks to remote ABR servers. Although the
server-side implementations could bring benefits of efficient
updates of algorithms, this will significantly increase the
operating expenses for content providers and thus are not
scalable to large-scale deployment. As shown in Figure 1, due
to high computation complexity (Figure 1(a)), the capacity

Fig. 1. Load testing results of remote ABR servers. {R, P, H} refer to
{RobustMPC [8], Pensieve [3], HotDASH [9]}. We build ABR servers with
tornado [26] and test the capacity with vegeta [27] from another directly-
connected server.

Fig. 2. Parameter counts of several recent pretrained language models are
going up sharply. Part of this figure was adapted from [29].

of ABR servers ranges from 20-1000 requests/second/core
(Figure 1(b)) even accelerated with GPUs. However, there
might be up to millions of concurrent connections for even one
streaming video [28]. Moreover, according to our measure-
ments in Kuaishou, one of the largest short video providers
in China, there are 20 billion videos provided by Kuaishou
on the Internet. Thus, introducing remote ABR servers may
increase the OPEX by up to millions of dollars (§VI-C)
for content providers, which makes the deployment of those
algorithms impractical in large-scale real-world scenarios.
Moreover, the round-trip latency between the clients and ABR
servers may also be intolerable for delay-sensitive scenarios
such as live streaming [21].

As discussed above, both methods fail to achieve high
performance and scalability at the same time. In this way,
algorithm designers would be constrained in considering the
practicality of ABR algorithms with deployable methods,
which will limit the potential capability of ABR. Moreover,
to seek better performance, a trend of designing more and
more heavyweight models has been observed in other commu-
nities (e.g., neural language processing in Figure 2). A similar
trend starts to evolve in the scenarios of ABR algorithms:
from 5 layers in 2017 [3], to the sophisticated combination
of tens of fully connected, convolution, and recurrent layers
in 2019 [17]. Employing more sophisticated algorithms in
future ABR designs will make the matter worse [21].

In response, to deploy heavyweight ABR algorithms online,
PiTree introduces a teacher-student learning-based method
and converts ABR algorithms into decision trees. Our obser-
vation is that although ABR algorithms are more and more
heavyweight in the design phase, the teacher-student learning
enables us to convert the finetuned models into lightweight
ones for online deployment.

III. PiTree DESIGN

In this section, we articulate our design choice of adopting
decision trees and design challenges (§III-A), and then intro-
duce our decision tree conversion algorithm (§III-B).

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 15:33:55 UTC from IEEE Xplore. Restrictions apply.

726 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

Fig. 3. The decision tree can approximate the original decision boundary.

A. Design Choices and Challenges

As introduced in §I, the design goal of PiTree is to faith-
fully convert sophisticated ABR algorithms into lightweight
and efficient models. Candidates for the target model after
conversion include linear regression [18], nonlinear regres-
sion [19], and policy sketches [30], etc.

1) Adopting Decision Trees: PiTree employs decision trees
due to the following reasons.

• The rich expressiveness of decision trees enables the
high faithfulness of conversion because they are non-
parametric and could represent complex policies [31].
As illustrated in Figure 3, decision trees can efficiently
approximate the original algorithm even with highly
nonlinear decision boundaries since they are flexible to
scale down to finer granularity when needed.

• Decision trees are lightweight for video players during
implementation. Since binary decision trees are com-
prised of conditional judgments, they could be easily
implemented with branching clauses in JavaScript. Our
evaluation shows that implementing a decision tree with
100 leaf nodes only increases the page size by <1% (§VI-
B).

• The structure of decision trees resembles the decision
logic of ABR algorithms, which usually contain several
judgments from different aspects. For example, optimiz-
ing QoE needs to select a high bitrate for the next chunk
under the conditions of high current buffer occupancy
and network throughput (avoiding rebuffer) and also high
current bitrate (ensuring smoothness).

Therefore, we adopt decision trees as our conversion tar-
get for PiTree. Our empirical results in §VI-A and VI-D
demonstrate that the decision tree (in the simplest way) could
maintain the performance degradation within 3% for state-of-
the-art ABR algorithms.

2) Design Challenges: Since decision tree training is a
supervised learning method, it is designed to optimize the loss
function (usually the average prediction accuracy [32]) with a
labeled dataset under the distribution of the whole state space:

π̂ = argmin
π∈Π

(
Es∼dπ

[
Iπ(s) �=a

])
(1)

where dπ is the average distribution of states when using
decision tree policy π. E denotes the expectation over policy
π in the set of all policies Π. s and a are the state and action
during bitrate adaption. Iπ(s) �=a equals to 1 if and only if
π(s) �= a, and equals to 0 otherwise.

However, it is difficult to directly get the probability distri-
bution of all the state space since the distribution is coupled
with traffic throughput, video length, policy preferences, etc.

Fig. 4. Without teacher-student learning, one wrong prediction may drive
the student off teacher’s trajectory in the state space.

Fig. 5. PiTree overview.

Some recent research efforts exhaustively search the action of
each state by uniformly sampling in the whole state space [4],
[8], which is both inefficient and may be biased from real-
world scenarios. The dimension of the state space is often
high (25 dimensions in Pensieve [3]), and the enumeration of
all combinations is inefficient. Meanwhile, since the frequency
in the state space might not be distributed uniformly in real-
world traces, uniformly sampling in the state space might be
biased and degrade the performance. In response, we employ
the design of a virtual player [3], [6] and simulate ABR algo-
rithms with real-world network traces. Compared to packet-
level emulations, virtual players are fast and efficient since
they only calculate chunk-level information. We then collect
the state-action pairs during simulations and train decision
trees with those pairs.

Moreover, faithfully converting ABR algorithms into deci-
sion trees with trace-based simulations is also challenging.
Due to the cascading effect of ABR algorithms in the video
client, even when the prediction is accurate, the performance of
the converted decision tree might still be degraded. As shown
in Figure 4, a wrong decision may bring the decision tree into
a region of unexperienced state space. The decision tree might
thus make more mistakes since it has no prior knowledge about
that region of state space. Those mistakes will further drive the
decision tree off the trajectory and worsen the performance.
In response, PiTree continuously simulates the decision tree
and lets the original ABR algorithm (teacher) correct the
decisions made by that decision tree (student). The decision
tree will gradually learn how to make decisions in the whole
state space.

B. Decision Tree Generation

The overview of PiTree is presented in Figure 5. To convert
sophisticated ABR algorithms into decision trees, PiTree uses
a virtual player [3], [4], [6] to simulate the dynamics of
a real video player efficiently and employs teacher-student
learning [20], [33] to improve the faithfulness of the decision
tree. With teacher-student learning, PiTree continuously sim-
ulates the performance of the decision tree and corrects the
errors made by the decision tree according to the results of
the original ABR algorithm. Similar to the training procedure
of existing deep learning-based ABR algorithms [3], [9],
the conversion procedure is fully conducted within the virtual
player, and does not require online implementation.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 15:33:55 UTC from IEEE Xplore. Restrictions apply.

MENG et al.: PRACTICALLY DEPLOYING HEAVYWEIGHT ABR ALGORITHMS WITH TEACHER-STUDENT LEARNING 727

Specifically, as shown in Algorithm 1, the decision tree
training algorithm contains the following steps:

Step 1: Initialization: To cope with dataset collection chal-
lenge as introduced in §III-A, for each ABR algorithm π∗,
PiTree first simulates the algorithm in a virtual player to
collect initial state-action pairs (S, A) (line 1). The virtual
player is a trace-based chunk-level simulator to mimic the
behaviors of an actual video player with traces and video
manifests and has been widely used in training [3], [6],
[9]. In reality, content providers could use public network
traces [34], [35] or collected historical traces [4] for simula-
tion. Specifically, when the ABR algorithm generates a bitrate
decision of the following chunk according to current states,
the virtual player calculates the states (e.g., rebuffer, download
time, etc.) at the time of that chunk has been downloaded. The
ABR algorithm then takes those states, generates the bitrate
decision (action) for the next chunk, and sends the action back
to the virtual player. Those state-action pairs are initialized as
(S, A).

Step 2: TrainDT:: After initialization, PiTree goes into the
teacher-student learning loop (line 2-6). At the i-th iteration,
we first train a decision tree π (student) with current state-
action pairs (samples) (S, A) using Classification and Regres-
sion Tree (CART) [32], a well-adopted decision tree training
algorithm (line 3). The decision tree takes the same inputs as
the original ABR algorithms. Instead of using the 0-1 loss for
prediction accuracy (Equation 1), we employ the normalized
square loss as the training loss during decision tree generation:

�(r; r∗) =
(r − r∗)2

(Rmax −Rmin)2
, Rmin � r � Rmax (2)

where r = π(s), r∗ = π∗(s). s is the current state as intro-
duced in Equation 1. Rmax and Rmin are the maximum and
minimum bitrates. The intuition behind using the square loss
is to penalize student’s bitrates that are far from those of the
teacher since they have more influence on the playback buffer,
etc. The squared-loss function also enables better theoretical
analysis (§IV). The CART algorithm then greedily splits the
samples into leaf nodes to minimize the loss function until
either (i) the number of leaf nodes of the decision tree reaches
the maximum threshold set by network operators, or (ii) all
samples have been completely split.

Step 3: VirtualPlay:: As we discussed in §III-A, due to the
cascading effects, the decision trees optimized from Step 2
may still perform badly with new traces. PiTree then simulates
the decision tree πi in the virtual player and collects a series of
new state-action pairs (Si, Ai) (line 4). At this time, although
student πi has already known how to make decisions when
faced with the states fed in training, independently simulating
πi might lead to poor performance. Many states in Si in the
simulation might not be experienced by student πi during the
training in this iteration. Therefore, we still need to correct the
decision tree policy in the following step.

Step 4: Correction:: To correct the actions collected from
Step 3, we feed the states in Si to the original ABR algorithm
π∗ (teacher), and collect the actions A

∗
i made by the teacher

(line 5). Finally, we aggregate the student’s states and the
teacher’s actions (Si, A

∗
i) with the current state-action pairs

(S, A) (line 6), and go back to Step 2 to continue the next

Algorithm 1: PiTree Training Procedure With Teacher-
Student Learning

Input: ABR Algorithm π∗.
Output: Decision Tree πM .
(S, A)←VirtualPlay(π∗)1

i← 02

foreach i ∈ [1, · · · , M] do3

πi ←TrainDT(S, A)4

(Si, Ai)←VirtualPlay(πi)5

A
∗
i ←Predict(π∗, Si)6

Aggregate S← S ∪ Si, A← A ∪ A
∗
i7

iteration. In this case, when training the decision tree πi+1

in the next iteration, it will learn from the mistakes made
by the last iteration. The loop continues until it reaches the
maximum iteration number (M) set by the user. The decision
tree generated by the last iteration will then be implemented
into client-side video players.

As introduced above, there are two hyper-parameters set
by the network operators: the number of leaf node N , which
represents the expressive ability of the decision tree, and the
maximum iteration number M , which controls the training
procedure. For the setting of N , usually a more complex ABR
algorithm will needs a higher N . Our empirical results show
that N could also be determined by observing the training
loss. For the setting of M , network operators can determine
M by observing the training curve, as shown in Figure 13.
Operators can also refer to the termination in neural network
training, e.g., automatically terminating the conversion when
the accuracy no longer changes [36]. We analyze our para-
meter settings on M and N and their sensitivity with several
ABR algorithms in detail in §VI-C. Moreover, our evaluation
in §VI-C shows that PiTree has strong generalization ability
if the network traces used at the training phase are statistically
different from those in the test environment.

IV. THEORETICAL ANALYSIS

In this section, we provide the theoretical analysis of the
performance of PiTree. To help operators to better understand
the behaviors of the converted decision trees, we answer two
questions on the worst-case performance of PiTree:

• Prediction error. For any deterministic ABR algorithms
emulated in any traffic traces, is there an upper bound for
the bitrate prediction error of the decision tree? (§IV-A)

• Generalization loss. During online deployment, is there
a bound for the generalization loss if the online scenarios
are different from emulations? (§IV-B).

A. Prediction Error

We first show that the prediction error of the converted
decision tree compared to the original ABR algorithm is
bounded. We define the root-mean-square error (RMSE) of
PiTree against the original algorithm during conversion as:

RMSET :=

√√√√ 1
T

T∑
t=1

(
r̂(t) − r∗(t)

)2
(3)

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 15:33:55 UTC from IEEE Xplore. Restrictions apply.

728 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

where r̂(t) and r∗(t) are the bitrate decisions made by π̂ and
π∗ at time t. We then have the following theorem to bound
the RMSE of PiTree:

Theorem 1: Among all policies Π generated with PiTree,
for a T -chunk video adopted in the virtual player, there exists
one policy π̂ ∈ Π that satisfies:

RMSET �
√

1 + log T

T
(Rmax −Rmin) (4)

Proof of Theorem 1: See Appendix.
π̂ could be found by cross-validation among decision trees

at different iterations, which is usually the decision tree from
the last iteration πM in our experiments. Theorem 1 provides
an upper bound of the bitrate prediction error for network
operators. As presented in the Equation 4, the upper bound
decreases with the increase of the number of video chunks
T . This is due to the cascading effect as shown in Figure 4:
A longer trajectory will amplify the difference between the
original ABR algorithm and the decision tree during training.
Therefore, the converted decision tree will receive better
corrections from the teacher during conversion, and become
more robust after conversion.

With the theoretical guarantee on the worst-case perfor-
mance, network operators would be more confident in deploy-
ing PiTree in critical scenarios. Note that Theorem 1 guaran-
tees the worst-case performance degradation of the algorithm,
which is much larger than the actual values with real-world
traces. Our empirical results demonstrate that the average
performance degradation on the QoE is less than 3% over
different types of traces (§VI-E).

B. Generalization Loss

With the guarantees on the conversion error during emula-
tion, network operators may also be interested in the general-
ization performance of PiTree when the online deployment
scenarios are different from the emulation. We thus have
the following upper bound of the average optimization loss
� (π̂(s); π∗(s)) when the decision tree generated by PiTree is
independently deployed online:

Theorem 2: For any δ > 0, with training loss εM , there
exists a policy π̂ ∈ {π1, · · · , πM} s.t. the average optimization
loss satisfies:

Es∼dπ̂
[� (π̂(s); π∗(s))] � εM + O(1/T) (5)

with probability at least 1−δ as long as M = O(T log(1/δ)).
M is the number of iterations in training. T is the number of
chunks in the video.

Proof of Theorem 2. See Appendix.
Thus we provide an upper bound for the average opti-

mization loss of PiTree. The training loss εM is related to
the complexity of original ABR algorithm and the number
of leaf nodes N (expressive ability of decision tree), and
could be bounded by Theorem 1. We also empirically evaluate
the generalization performance of PiTree when the statisti-
cal characteristics of the training traces are different from
the online test traces, resulting in negligible generalization
loss (§VI-C). Further evaluation of PiTree with a series of
real-world experiments demonstrates the strong generalization
ability of PiTree in the real world (§VI-D).

Fig. 6. The statistics of the throughput of network traces.

V. IMPLEMENTATION

Due to the fast increase of Internet bandwidth (tens of
Mbps on average [37]), existing videos and network traces for
evaluation [3], [4], [9] will behave trivially on bitrate decisions
around 1 Mbps. Therefore, we collect several new traces
together with 4G network traces measured by us (§V-A) and
compile new videos at ultra-high bitrates (§V-B). Traces and
videos have been released at https://transys.io/pitree-dataset/.
We also introduce experiment setups of PiTree in §V-C.

A. Network Traces

As for network traces, to make a fair comparison, we adopt
the traces used in the evaluation of previous work [3], [4],
[8] to evaluate PiTree. Network traces include measurements
from Norway’s 3G HSDPA [35] (denoted as HSDPA), US
FCC broadband measurement results in 2016 [34] (denoted as
FCC16) and traces provided by Oboe [4]. These three sets of
traces are statistically different, as presented in Figure 6(a).

Meanwhile, with the development of the networking
infrastructure in recent years, the bandwidth of traces evaluated
in existing papers (up to several Mbps) is insufficient for
the Internet in 2020 (tens of Mbps). Therefore, as illustrated
in Figure 6(b), we adopt four recent sets of network traces
reflecting different variations:

• FCC18 is the measurement results of the broadband
network in 2018 provided by FCC [34], with a median
bandwidth improvement by 4.04× compared to 2016.

• HSR. We adopt the 4G measurements on high-speed rails
in 2018 to construct a scenario with violently fluctuating
4G bandwidths [37].

• Ghent. We use the 4G measurements on foot, bicycle,
bus, tram, train, and car in 2016 by Ghent University,
which are moderately fluctuating 4G bandwidths [38].

• Lab. Finally, we also measure the indoor 4G bandwidth.
We interchangeably use four congestion control algo-
rithms (BBR, Cubic, Vegas, and HighSpeed). The indoor
traces construct a scenario with gently fluctuating 4G
bandwidths.

B. Video Sample

We evaluate PiTree with two video samples and present
the characteristics in Table II. To make a fair comparison,
we employ the “EnvivoDash3” video (denoted as V-std),

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 15:33:55 UTC from IEEE Xplore. Restrictions apply.

MENG et al.: PRACTICALLY DEPLOYING HEAVYWEIGHT ABR ALGORITHMS WITH TEACHER-STUDENT LEARNING 729

TABLE II

CHARACTERISTICS OF VIDEO SAMPLES

Fig. 7. The distribution of bitrates of two video samples.
TABLE III

QOE METRICS CONSIDERED IN OUR EVALUATION [3], [7]

which has been used in prior work [3], [4]. However, the high-
est bitrate of the V-std video is 4.3Mbps, which is much
lower than the network bandwidth nowadays, as shown in Fig-
ure 6(b). In this case, most decisions of ABR algorithms would
be trivial by always selecting the highest bitrate.

Therefore, we refer to the bandwidth levels of YouTube [39]
and construct a new video sample with the highest bitrate
of 40Mbps based on MPEG-DASH. Since video samples are
encoded with variable bitrate (VBR), the actual bitrate of each
chunk fluctuates around the targeted bitrate. We present the
distribution of the bitrate of all chunks of our V-high video
together with the V-std video in Figure 7.

C. Experiment Setup

1) ABR Algorithms: We apply PiTree over the following
state-of-the-art ABR algorithms based on the source codes
provided by the authors:

• RobustMPC [8] employs integer programming to opti-
mize bitrates with buffer occupancy and network through-
put.

• Pensieve [3] models the bitrate selection process with
Reinforcement Learning (RL) and makes predictions
based on 25 states with a neural network.

• HotDASH [9] extends Pensieve and uses two cascaded
neural networks to make ABR decisions.

2) QoE Metrics: To make a fair comparison, we employ
the QoE metrics adopted in the ABR algorithms above. The
QoE metric can be expressed as:

QoE=
1
T

(
T∑

t=1

q(Rt)− μ

T∑
t=1

βt −
T−1∑
t=1

|q(Rt+1)− q(Rt)|
)

(6)

where Rt represents the bitrate of chunk t. T is the total
number of chunks. βt is the rebuffering time of chunk t. q(·)
is the utilization function as defined in Table III. To better
illustrate the individual performance of different parts of QoE,
we consider three choices of q(Rt) in prior work [3], [5], [8].
Three terms in Equation 6 respectively refer to video quality,
rebuffer penalty and smoothness penalty.

Fig. 8. Overall average results of PiTree. {R, P, H} refer to {RobustMPC,
Pensieve, HotDASH} respectively.

3) Browser Implementations: We use the virtual player
in [3] for the decision tree training. We convert the deci-
sion tree into JavaScript codes with sklearn-porter.1

We migrate the decision tree generated by PiTree into
dash.js [10] and compress JavaScript codes with the
UglifyJS plugin in the Grunt.js.2 We use Mahimahi [40]
to emulate the network conditions and set the round-trip time
(RTT) to 80ms, which are the same with Pensieve [3].

4) Parameter Settings: As we discussed in §III-B, the num-
ber of leaf nodes should be adjusted for different ABR
algorithms. According to the complexity of ABR algorithms,
we set the number of leaf nodes to 500, 100, and 100 for
RobustMPC, Pensieve, and HotDASH. We discuss our settings
in §VI-C.

VI. EVALUATION

We apply PiTree over three state-of-the-art ABR algo-
rithms [3], [8], [9], with seven sets of network traces, two types
of videos, and on three QoE metrics. We evaluate PiTree in
the following aspects:

• QoE Maintenance. Our evaluation results demonstrate
that the average performance degradation caused by
PiTree is within 3% for all three ABR algorithms (§VI-
A).

• Overhead. We demonstrate that the page size, decision-
making latency, and runtime memory utilization of
PiTree-based methods are reduced significantly com-
pared to the original ones (§VI-B).

• Deployment Efforts. Our evaluation shows that
PiTree could save considerable operating expenses,
consume acceptable additional offline training time, and
have robust parameter settings and strong generalization
ability (§VI-C).

• Real-world Performance. We evaluate PiTree in the wild
with four wide area networks. Experiments demonstrate
that PiTree could maintain the performance in the real
world even trained with other traces (§VI-D).

• PiTree Deep Dive. We finally demonstrate that PiTree
improves the bitrate prediction error on three ABR algo-
rithms and outperforms other conversion options. Eval-
uation also validates the theoretical bounds of PiTree
(§VI-E).

A. QoE Maintenance

We demonstrate the performance maintenance of PiTree by
comparing the QoE of original algorithms and decision trees

1https://github.com/nok/sklearn-porter
2https://github.com/gruntjs/grunt-contrib-uglify

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 15:33:55 UTC from IEEE Xplore. Restrictions apply.

730 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

Fig. 9. QoE ratio of PiTree on different ABR algorithms and QoE metrics
(measured with the V-std video and standard bitrate traces).

Fig. 10. QoE ratio of PiTree on different ABR algorithms and QoE metrics
(measured with the V-high video and high bitrate traces).

converted with PiTree. We thus measure the ratio of QoE
by the PiTree-generated decision trees and the original algo-
rithms. A QoE ratio of less than 100% indicates a performance
degradation. Since the QoE spans across positive and negative
values, we normalize all the QoE values into a distribution
with mean value as 1 and standard deviation as 1. We first
measure the average normalized QoE and average QoE ratio
across three types of QoE metrics and all traces, as shown
in Figure 8. The average performance degradation is less than
3% for three algorithms (average QoE ratio of Pensieve is
97% in Figure 8(b)), which is negligible compared to the
performance improvement achieved by new algorithms.

We further present the detailed results on different traces
and different QoE metrics in Figures 9 and 10. Among them,
Figure 9 reports the experiment results with V-std and
respective standard bitrate traces (Figure 6(a)) and Figure 10
summarizes the V-high video and high bitrate traces (Fig-
ure 6(b)). The 10th, 25th, 50th, 75th, and 90th percentiles
of QoE ratios on three QoE metrics, seven sets of traces,
and three ABR algorithms are presented. Most of the median
performance degradation is less than 5%, which demonstrates
that PiTree could faithfully convert the sophisticated algorithm
across a wide range of scenarios.

B. Overhead

We measure the overhead of implementing PiTree into
video players across several metrics with different numbers
of leaf nodes. As decision trees converted from different
algorithms have similar overhead, we present the average
results of decision trees with three sets of traces and three
ABR algorithms.

1) Page Size: We first measure the HTML page size
and present the results in Figure 12(a). We also implement
original ABR algorithms into video players and demonstrate
their impracticality. dash represents the rate-based algorithm
adopted in dash.js. Compared to the original dash-based
page, Pensieve increases the page size by 4.6× (from 381KB
to 1750KB) with Tensorflow.js [23]. The page load time
is thus increased by 10 seconds when the goodput is 1200kbps.
Users have to wait for a long time before the video can play,
which might drive some of them to leave the page [22].

Fig. 11. Overhead of PiTree. N100: the decision tree with 100 leaf nodes.
The error bar of runtime memory represents the peak value.

Fig. 12. Page size and operating expenses of PiTree.

In contrast, results show that even with 2000 leaf nodes
(N2k), the page size of PiTree is only increased by 13%.
Moreover, our experiments in §VI-A demonstrate that decision
trees with 100 leaf nodes are faithful enough for Pensieve
and HotDASH, which only increases the page size by about
0.6%. The negligible page size difference only introduces an
additional page load time by 10ms.

2) Decision Latency: We further measure the decision
latency within JavaScript of PiTree-based ABR decision trees
and the original rate-based ABR algorithm in dash.js. Since
the decision-making latency is highly related to underlying
devices, we measure the latency on two testbeds: a PC with an
Intel Core i7-8550 CPU, and a mobile phone with a Qualcomm
Snapdragon 821 CPU. As shown in Figure 11(a), the decision
latency of original algorithms is found to be 1s, 3-4 magnitudes
larger than that of PiTree-based algorithms. Such a long
decision latency will not only impair the QoE due to the out-
of-date information [8] but also stall the video player when the
video chunk length is less than the average decision latency
(e.g., 2s in [11]). In contrast, the average decision-making
latency of PiTree is significantly reduced to less than 1ms,
which is at the same magnitude as the default ABR algorithm
in dash.js.

3) Memory Utilization: We finally measure the average
runtime JavaScript heap memory with the memory API in
Chrome DevTools [41]. We implement a fixed bitrate algo-
rithm as a baseline, which constantly selects the lowest bitrate,
to eliminate the influence of other functions in the video
player. As shown in Figure 11(b), the average runtime memory
is increased by less than 7% for all decision trees, which is
negligible compared to other components in the video player.

C. Deployment Efforts

We evaluate the operating expenses and offline conversion
time during the deployment of PiTree. Moreover, we also
analyze the sensitivity and generalization ability of PiTree in
different scenarios, indicating that network operators do not
need to pay many extra efforts to finetune the parameters.

1) Operating Expenses: We further compare the OPEX
of PiTree with other server-based ABR solutions. With the
ABR server capacity measured in Figure 1(b), we calculate

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 15:33:55 UTC from IEEE Xplore. Restrictions apply.

MENG et al.: PRACTICALLY DEPLOYING HEAVYWEIGHT ABR ALGORITHMS WITH TEACHER-STUDENT LEARNING 731

Fig. 13. Single prediction accuracy of PiTree on the training set at different iterations. The accuracy goes down because (S, A) lacks samples in the first
several iterations and decision trees are overfitted.

Fig. 14. Offline training time breakdown.

the OPEX per hour for three ABR algorithms based on the
server operating expenses. For example, a 4-core Amazon
EC2 instance with similar configurations costs $0.188 per hour
(t2.xlarge).3 As shown in Figure 12(b), for large content
providers such as YouTube, with more than one billion hours
of video clips being watched daily,4 the average concurrent
viewer is approximately 1Bh

24h = 40M . Thus they need to pay
up to millions of dollars monthly for remote ABR servers.
Although the estimation here is an extreme case in the real
world, it is indisputable that reducing considerable online
servers will save OPEX for content providers. This cost makes
the server-based ABR solutions not scalable. In contrast, since
PiTree-based solutions are directly implemented into video
clients, they do not introduce additional OPEX and thus
prevent revenue loss for large-scale content providers.

2) Offline Conversion Cost: We break down the training
time for each algorithm for 500 iterations and present the
results in Figure 14 according to steps in Algorithm 1. The
time of TrainDT and VirtualPlay does not vary much
with respect to ABR algorithms. Note that the predictions in
line 5 in Algorithm 1 are accelerated by 32 parallel virtual
CPU cores, which again demonstrates the complexity of state-
of-the-art ABR algorithms. The total training time is up to
2.3 hours for three ABR algorithms, which is acceptable since
PiTree needs running offline only once.

3) Sensitivity Analysis: To test the sensitivity of the num-
ber of leaf nodes in PiTree, we vary the number of leaf
nodes from 100 to 2000 and measure the single prediction
accuracy for the three ABR algorithms evaluated before. The
results are presented in Figure 13. For RobustMPC, as shown
in Figure 13(a), the accuracy of decision trees with less than
500 leaf nodes converge to different levels since with better
expressiveness, the performance will be improved. However,
the improvement is not unlimited. As long as the number of
leaf nodes is high enough to express the policy of RobustMPC,
more nodes will lead to overfitting and, thus, a slower conver-
gence (e.g., N1k and N2k in Figure 13(a)). Decision trees with
different numbers of leaf nodes for Pensieve and HotDASH
(Figure 13(b), 13(c)) demonstrate a similar relationship. The
converged performance of PiTree is hardly affected as long

3https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
4http://www.businessofapps.com/data/youtube-statistics/

Fig. 15. Normalized QoElin of PiTree-over-Pensieve when test traces are
statistically different from training traces.

as the number of leaf nodes is above a certain level, indicating
strong robustness towards the number of leaf nodes.

4) Generalization of PiTree: When deployed in practice,
the statistical distributions of network traces in test might be
different from those in training. Therefore, we want to measure
the generalization ability of PiTree when network traces
change without retraining the decision tree. We measure the
normalized QoElin of the decision trees trained with different
traces in different test traces. The decision trees evaluated
here are set to imitate the behaviors of Pensieve. As shown
in Figure 15, even if decision trees are trained with different
traces, they perform similar during testing. We also measure
the ratio of the normalized QoE over that when the training
and test environments are the same, the median of which in
all experiments in Figure 15 is higher than 97%. Performance
over Oboe on some certain traces is degraded a little since the
traffic distribution of Oboe is quite different from those of the
other two sets of traces (Figure 6). Experiment results for other
ABR algorithms and QoE metrics are similar (not presented),
which demonstrate the strong generalization ability of PiTree.
Moreover, online parameter tuning [4] could be employed to
further enhance the generalization ability. We leave the large-
scale deployments as our future work.

D. Real-World Experiments

We evaluate PiTree over RobustMPC in the wild using three
wide area networks (two broadband and one cellular): Beijing-
Shenyang (BJ-SY) with broadband access, Beijing-Hangzhou
(BJ-HZ) with broadband access, and a 4G cellular network of
China Mobile (CM-4G). In these experiments, a client, running
on a Windows 10 laptop and Firefox 73 browser, contacted the
video server as described in §V-C located in Beijing. On each
network, we loaded our test video 100 times with each scheme,
randomly selecting the order among them. Since the network
bandwidth in the real world is much higher than 4.3Mbps,
we use the V-high video for evaluation.

We test the video for more than 50 hours of view time
in total in February 2020. We present the experiment results
in Figure 16. As shown in the figure, PiTree could main-
tain the QoE ratio of the original ABR algorithm in most
cases, with the minimum 50th percentile of 98%. Note that

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 15:33:55 UTC from IEEE Xplore. Restrictions apply.

732 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

Fig. 16. QoE ratio of PiTree on RobustMPC in the real-world experiments.

Fig. 17. Raw metrics of Pensieve and PiTree-over-Pensieve.

the PiTree decision trees evaluated here were solely trained
using the high bandwidth traces presented in Figure 6(b).
Nonetheless, even on these new networks, the decision trees
PiTree could also behave faithfully in the bitrate decisions.
Experiments with other ABR algorithms show similar results.

E. PiTree Deep Dive

Finally, we deep dive into PiTree in three directions:
First, we present the difference of raw metrics during the
conversion. Second, we want to know how the decision tree
behave compared to other conversion options and whether our
design choice in §III-A holds. Finally, we demonstrate that the
theoretical bounds in §IV-A hold in our experiments.

1) Raw Metrics Decoupling: Besides the QoE ratio eval-
uated in §VI-A, we measure the raw metric of different
traces. According to the QoE definition in Equation 6, raw
metrics include bitrate, rebuffering time, and smoothness
penalty. We present different percentiles of three metrics of the
original Pensieve model and the converted model from PiTree
in Figure 17. On one hand, as the major contributing part to the
QoE, PiTree introduces a performance degradation of 2.6% on
median compared to the original model. On the other hand,
the rebuffering time and smoothness penalty of PiTree have
been slightly improved. Evaluation with RobustMPC demon-
strates similar results. We hypothesize such phenomenon to be
an observation of the lottery ticket hypothesis in the machine
learning community [42]: Sometimes the performance of the
pruned model is reliably better than the original model due
to the reduction of the overcomplexity of the original model
and the improvement of convergence efficiency. We leave
the further exploration on the model overcomplexity of ABR
algorithms as our future work.

2) Model Conversion Comparison: We measure the accu-
racy and root-mean-square error (RMSE) of the decisions
made by PiTree compared to the original ABR decisions.
As baselines, we also implement two regression-based meth-
ods introduced in recent interpretation methods: (i) linear
regression [18] and (ii) mixed regression with expectation-
maximization (EM) [19]. As both methods are designed for
local predictions, to make a fair comparison, we run the
baselines in the following way: at training, we first use k-
means clustering to cluster the samples into k groups. We then
train the linear and mixed method inside each group. When
predicting a new sample, we first find the nearest group to
the new sample and apply the results of that group. We vary

Fig. 18. The training accuracy and RMSE of PiTree against two baselines.
Error bar represents the standard deviation.

k from 1 to 50 and report the best results for the two
baselines. To eliminate the randomness caused by the split
of training and validation data, we repeat the experiments
for 100 times. Results of the V-std video and standard
bitrate traces are shown in Figure 18. The experiments with
the high bitrate video and traces show the similar results.
PiTree outperforms the other two baselines (linear regression
and mixed regression) on both accuracy and RMSE, which
indicates that our design choice in §III-A of selecting the
decision tree as our conversion target is reasonable.

3) Theoretical Bound Analysis: From the RMSE results
in Figure 18(b), we can also verify the theoretical bound
derived in §IV-A. As for the standard bitrate experiments,
we have Rmax = 4300kbps, Rmin = 300kbps, and T = 49.
Thus the upper bound of RMSE normalized by the bitrate is:

RMSE

Rmax −Rmin
�
√

1 + log T

T
= 0.32

On the other hand, three RMSE values of PiTree in Fig-
ure 18(b) are less than 0.1 after normalization. Therefore, all
the results of our experiments under different conditions satisfy
the upper bound above. Note that the RMSE bound is much
higher than the average RMSE of PiTree in this case since
the theoretical bound guarantees the worst-case performance
to deliver confidence to network operators. Empirical results
often demonstrate much better performance than the theoret-
ical bound. The RMSE bound would be tighter with longer
training videos as the right-hand-side term decreases with T .

VII. DISCUSSIONS

In this section, we discuss and highlight several potential
directions as our future work.

A. Insights Behind PiTree

As evaluated in §VI-A, converted decision trees exhibit
comparable performance to original ABR models, including
ILP and neural networks. Our main observation from the
evaluation result is that in the sequential decision-making
scenarios such as ABR streaming, the main reason of employ-
ing sophisticated models is not the policy itself are that
complex, but those sophisticated models are easy to train. For
example, Pensieve trains ABR model with deep reinforcement
learning [3], where neural networks can be updated with
many mature algorithms (e.g., policy gradients [43]). However,
directly training decision trees from scratch is difficult to
achieve the same performance: without labeled datasets in
the sequential decision-making process, decision trees are not
easy to be efficiently updated during training due to its non-
parametricity. PiTree overcomes this problem by continuously

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 15:33:55 UTC from IEEE Xplore. Restrictions apply.

MENG et al.: PRACTICALLY DEPLOYING HEAVYWEIGHT ABR ALGORITHMS WITH TEACHER-STUDENT LEARNING 733

collecting trajectories from the teacher and train the decision
tree with labeled samples.

B. Dynamicity of PiTree

Due to the complexity of the decision process of state-
of-the-art algorithms (e.g., neural network), the parameters
inside are difficult to be dynamically adjusted. Converting
complicated ABR algorithms also enables us to dynamically
adjust the structure of the decision tree to adapt to different
scenarios. For example, with the help of decision tree adaption
methods [44], network operators could design ABR algorithms
that are adaptive to different network scenarios. Network
operators could also cooperate with the parameters in PiTree
with recent online parameter tuning mechanisms for better
adaption in different scenarios [4]. We leave the analysis of
decision tree dynamics as our future work.

C. Fairness of Learning-Based ABR

The fairness of ABR algorithms is another critical issue
and has been widely discussed in the previous work [11].
Network operators should avoid providing unfair services
to different users. However, some recent clues indicate that
DNNs are likely to trade a little fairness for a more efficient
overall performance [45]. Moreover, since the policies are
nontransparent to network operators, it is unknown whether
the adoption of DL-based networking systems will impair
the fairness among users. Converting DNN-based policies to
decision trees might address the fairness problem to some
extent by transparentizing the decision policies. Nonetheless,
further research with advanced methods (e.g., fair decision
trees [46]) is still required to ensure fairness of learning-based
ABR algorithms.

VIII. RELATED WORK

There is little prior work on how to deploy heavyweight
ABR algorithms into client-side video players. In terms of
approaches and motivations, besides recent research efforts
on optimizing the QoE as introduced in §II-A, there are also
several lines of work that are related to PiTree:

A. Decision Trees in Video Streaming

Besides PiTree, decision trees have also been applied to
many subfields in video streaming, most of which are used for
prediction. For example, Hammed et al. employed decision
trees to predict perceptual video quality from compressed
bitstream [47]. Balachandram et al. adopted decision trees
to predict user engagement based on video session qual-
ity [48]. All efforts above are orthogonal to PiTree and
could be integrated together for better performance. However,
few research efforts directly use a decision tree for bitrate
adaption. The main reason is that decision trees are mainly
suitable for supervised learning scenarios (e.g., prediction)
with independent actions. Due to the cascading effect of ABR,
directly training the decision tree is difficult to achieve the
same performance [3]. PiTree overcomes this issue by letting
the original ABR algorithm teach the student decision tree
with its samples.

B. Complex Model Deployment

In other communities, there are also some recent work on
how to deploy sophisticated models in practice. One set of
solutions introduce new acceleration devices (e.g., DSP [49],
GPU [7], or ASIC [50]). Another way to deploy complex
models (especially DNNs) is to prune and compress neural
networks by removing insignificant filters [51], [52]. However,
most of them are expensive, case-specific, and difficult to be
generalized to other methods. In contrast, as PiTree does not
require any information from the ABR algorithms, it could be
applied to any sophisticated algorithms as long as they are non-
stochastic. Moreover, instead of introducing new expenses [7],
[49], the online overhead and deployment efforts of PiTree are
negligible (§VI-B, §VI-C).

C. Teacher-Student Learning for Sequential Decisions

Using demonstrations from teachers has a series of suc-
cessful use cases in the sequential decision-making process,
such as robotics control [33]. Researchers from the machine
learning community have also proposed different enhancement
to the basic procedure of teacher-student learning, including
innovations in the resampling of dataset [20], designs of
teachers’ and students’ structures [53], and improving the
teachers’ exploration efficiency [54], [55]. PiTree employs
the existing advances in teacher-student learning and analyzes
the theoretical performance in the scenario of ABR stream-
ing. Advanced teacher-student learning algorithms might also
improve the performance, which is left as our future work.

D. Other Practical Issues of Learning-Based ABR

Besides the heavyweightness of complex ABR models,
there are also several issues that need to be addressed before
the large-scale deployment of learning-based ABR algorithms.
Some recent papers focus on the interpretability [56], [57] and
verification [58] of learning-based ABR algorithms. By con-
verting complex models into self-interpretable decision trees,
PiTree could offer better interpretability and transparency
for network operators compared to original ones. Other
researchers focus on speeding up the training procedure and
eliminating the influence of network traces by proposing novel
training methodology [59], [60], which could also be adopted
in PiTree to further improve the training performance.

IX. CONCLUSION

In this article, we propose PiTree, a new framework to gen-
erally make the deployment of sophisticated ABR algorithms
practical in the real world. PiTree faithfully converts different
ABR algorithms into decision trees with the help of offline
teacher-student learning with theoretically bounded average
optimization loss. Evaluations over three representative ABR
algorithms show that PiTree could achieve high performance,
low runtime overhead at the same time with negligible addi-
tional deployment efforts. We believe that PiTree could accel-
erate the design of new ABR algorithms.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 15:33:55 UTC from IEEE Xplore. Restrictions apply.

734 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

APPENDIX

PROOFS OF THEOREMS

We begin by proving that the loss function of PiTree is
LIpschitz [61] and STrongly convex (LIST):

Lemma 1: �(r; r∗) in Equation 2 is Lipschitz, i.e. ∃L, s.t.
∀r∗, r1, r2 ∈ [Rmin, Rmax],

|�(r1; r∗)− �(r2; r∗)| � L · |r1 − r2| (7)
Lemma 2: �(r; r∗) in Equation 2 is strongly convex, i.e. ∃ν,

s.t. ∀r∗, r1, r2 ∈ [Rmin, Rmax], ∀λ ∈ [0, 1],

� (λr1 + (1− λ)r2; r∗) � λ�(r1; r∗) + (1 − λ)�(r2; r∗)

−
(ν

2

)
λ(1 − λ)(r1 − r2)2 (8)

Proof of Lemma 1: ∀r∗, r1, r2 ∈ [Rmin, Rmax], we have

|�(r1; r∗)− �(r2; r∗)|
=
|(r1 − r∗)2 − (r2 − r∗)2|

(Rmax −Rmin)2
=
|r1 + r2 − 2r∗| · |r1 − r2|

(Rmax −Rmin)2

� (|r1 − r∗|+ |r2 − r∗|) · |r1 − r2|
(Rmax −Rmin)2

(∵ r∗, r1, r2 ∈ [Rmin, Rmax])

�
(

2
Rmax −Rmin

)
|r1 − r2| (9)

Thus �(r; r∗) is Lipschitz with Lipschitz constant L =
2/(Rmax −Rmin).

Proof of Lemma 2: Similarly, we could also demonstrate
that �(r; r∗) is strongly convex: ∀λ ∈ [0, 1], we have:

�(λr1 + (1 − λ)r2; r∗)

=
(λ(r1 − r∗) + (1− λ)(r2 − r∗))2

(Rmax −Rmin)2

= λ2�(r1; r∗) + (1− λ)2�(r2; r∗)

+
2λ(1− λ)(r1 − r∗)(r2 − r∗)

(Rmax −Rmin)2

= λ�(r1; r∗) + (1− λ)�(r2; r∗)− λ(1 − λ)
(

�(r1; r∗)

+ �(r2; r∗)− 2(r1 − r∗)(r2 − r∗)
(Rmax −Rmin)2

)

= λ�(r1; r∗) + (1− λ)�(r2; r∗)− 1
(Rmax −Rmin)2

×λ(1− λ) (r1 − r2)
2 (10)

with strong convexity constant ν = 2/(Rmax −Rmin)2.
With the LIST loss function, the two theorems in §IV could

be derived from two existing papers on the performance bound
of teacher-student learning [33], [61].

Proof of Theorem 1 (§IV-A): From the COROLLARY 5
in [61], we have

RegT :=
T∑

t=1

�
(
r(t); r∗(t)

)
− min

r∈[Rmin,Rmax]

T∑
t=1

�
(
r; r∗(t)

)

� L2(1 + log T)
2ν

(11)

where L and ν are the constants defined above, and RegT

is the regret of the algorithm if it did not take the optimal

decision. As for PiTree,

∵ r∗(t) ∈ [Rmin, Rmax], min
r∈[Rmin,Rmax]

T∑
t=1

�
(
r; r∗(t)

)

= min
r∈[Rmin,Rmax]

T∑
t=1

(
r − r∗(t)

)2

= 0 (12)

Substituting L and ν in Equation 11 with the expressions from
Equation 9 and 10, we have:

1
T

T∑
t=1

(
r̂(t) − r∗(t)

)2

� 1 + log T

T
(Rmax −Rmin)2 (13)

Thus, the RMSE is bounded after rooting the equation above.

Proof of Theorem 2 (§IV-B): Since the loss function �(r; r∗)
satisfies the LIST assumption, and also the output actions of
ABR algorithms (bitrates) are discrete, we could extend the
THEOREM 3.3 introduced in [33] with THEOREM 2 in [61].
Let Qπ′

t (s, π) denote the t-step cost of executing action a in
initial state s and then following policy π′:

Qπ′
t (s, a) =

1
(Rmax −Rmin)2

(
(a− π∗(s1))

2

+
∑t

τ=2

(
π′(sτ)− π∗(sτ)

)2)
(14)

where sτ is the state at the time τ . Thus we have ∀a, t ∈ [1, T],

Qπ∗
T−t+1(s, a)−Qπ∗

T−t+1 (s, π∗(s)) =
(a− π∗(s))2

(Rmax −Rmin)2

� 1 � u (15)

Hence the proof follows [33] and [61] with the fact that u = 1.

REFERENCES

[1] Z. Meng, J. Chen, Y. Guo, C. Sun, H. Hu, and M. Xu, “PiTree: Practical
implementation of ABR algorithms using decision trees,” in Proc. 27th
ACM Int. Conf. Multimedia, Oct. 2019, pp. 2431–2439.

[2] Mobile Accounted for 62 Percent of Online Video Views.
Accessed: Feb. 25, 2020. [Online]. Available: https://www.statista.com/
statistics/444318/mobile-device-video-views-share/

[3] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proc. Conf. ACM Special Interest Group Data
Commun., Aug. 2017, pp. 197–210.

[4] Z. Akhtar et al., “Oboe: Auto-tuning video ABR algorithms to network
conditions,” in Proc. Conf. ACM Special Interest Group Data Commun.,
Aug. 2018, pp. 44–58.

[5] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: Near-optimal
bitrate adaptation for online videos,” in Proc. IEEE INFOCOM-35th
Annu. IEEE Int. Conf. Comput. Commun., Apr. 2016, pp. 1–9.

[6] K. Spiteri, R. Sitaraman, and D. Sparacio, “From theory to practice:
Improving bitrate adaptation in the DASH reference player,” in Proc.
9th ACM Multimedia Syst. Conf., Jun. 2018, pp. 123–137.

[7] H. Yeo, Y. Jung, J. Kim, J. Shin, and D. Han, “Neural adaptive content-
aware Internet video delivery,” in Proc. USENIX Symp. Operating Syst.
Design Implement. (OSDI), 2018, pp. 645–661.

[8] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over HTTP,” in
Proc. ACM Conf. Special Interest Group Data Commun., Aug. 2015,
pp. 325–338.

[9] S. Sengupta, N. Ganguly, S. Chakraborty, and P. De, “HotDASH:
Hotspot aware adaptive video streaming using deep reinforcement learn-
ing,” in Proc. IEEE 26th Int. Conf. Netw. Protocols (ICNP), Sep. 2018,
pp. 165–175.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 15:33:55 UTC from IEEE Xplore. Restrictions apply.

MENG et al.: PRACTICALLY DEPLOYING HEAVYWEIGHT ABR ALGORITHMS WITH TEACHER-STUDENT LEARNING 735

[10] T. Stockhammer, “Dynamic adaptive streaming over HTTP–standards
and design principles,” in Proc. 2nd Annu. ACM Conf. Multimedia Syst.,
Feb. 2011, pp. 133–144.

[11] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and
stability in HTTP-based adaptive video streaming with festive,” in Proc.
8th Int. Conf. Emerg. Netw. Exp. Technol. (ACM CoNEXT), 2012,
pp. 97–108.

[12] Z. Li et al., “Probe and adapt: Rate adaptation for HTTP video streaming
at scale,” IEEE J. Sel. Areas Commun., vol. 32, no. 4, pp. 719–733,
Apr. 2014.

[13] C. Wang, A. Rizk, and M. Zink, “SQUAD: A spectrum-based quality
adaptation for dynamic adaptive streaming over HTTP,” in Proc. 7th Int.
Conf. Multimedia Syst., May 2016, pp. 1–12.

[14] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson,
“A buffer-based approach to rate adaptation: Evidence from a large
video streaming service,” in Proc. ACM Conf. SIGCOMM, Aug. 2014,
pp. 187–198.

[15] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo, “ELASTIC:
A client-side controller for dynamic adaptive streaming over HTTP
(DASH),” in Proc. 20th Int. Packet Video Workshop, Dec. 2013, pp. 1–8.

[16] B. Wang and F. Ren, “Towards forward-looking online bitrate adaptation
for DASH,” in Proc. 25th ACM Int. Conf. Multimedia, Oct. 2017,
pp. 1122–1129.

[17] T. Huang, C. Zhou, R.-X. Zhang, C. Wu, X. Yao, and L. Sun, “Comyco:
Quality-aware adaptive video streaming via imitation learning,” in Proc.
27th ACM Int. Conf. Multimedia, Oct. 2019, pp. 429–437.

[18] M. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?’:
Explaining the predictions of any classifier,” in Proc. Conf. North
Amer. Chapter Assoc. Comput. Linguistics, Demonstrations, 2016,
pp. 1135–1144.

[19] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing, “LEMNA:
Explaining deep learning based security applications,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2018, pp. 364–379.

[20] O. Bastani, Y. Pu, and A. Solar-Lezama, “Verifiable reinforcement
learning via policy extraction,” in Proc. NeurIPS, 2018, pp. 2494–2504.

[21] G. Yi et al., “The ACM multimedia 2019 live video streaming grand
challenge,” in Proc. 27th ACM Int. Conf. Multimedia, Oct. 2019,
pp. 2622–2626.

[22] S. S. Krishnan and R. K. Sitaraman, “Video stream quality impacts
viewer behavior: Inferring causality using quasi-experimental designs,”
in Proc. ACM IMC, 2012, pp. 211–224.

[23] D. Smilkov et al., “Tensorflow. Js: Machine learning for the Web and
beyond,” in Proc. SysML, 2019, pp. 1–13.

[24] A. Ganjam et al., “C3: Internet-scale control plane for video quality opti-
mization,” in Proc. 12th USENIX Symp. Netw. Syst. Design Implement.
(NSDI), 2015, pp. 131–144.

[25] A. Beben, P. Wisniewski, J. M. Batalla, and P. Krawiec, “ABMA+:
Lightweight and efficient algorithm for HTTP adaptive streaming,” in
Proc. 7th Int. Conf. Multimedia Syst., May 2016, pp. 1–11.

[26] Tornado Web Server. Accessed: Feb. 25, 2020. [Online]. Available:
https://www.tornadoweb.org/

[27] Tsenart/Vegeta: Http Load Testing Tool and Library. it’s Over 9000!
Accessed: Feb. 25, 2020. [Online]. Available: https://github.com/
tsenart/vegeta

[28] Official Youtube Blog: With Nearly 2 Million Concurrent Viewers and
Over 3 Million Live Watch Hours, First Presidential Debate Breaks
Political Record. Accessed: Feb. 25, 2020. [Online]. Available: https://
youtube.googleblog.com/2016/09/with-nearly-2-million-concurrent.html

[29] C. Rosset. Turing-NLG: A 17-Billion-Parameter Language Model by
Microsoft. Accessed: Feb. 25, 2020. [Online]. Available: https://www.
microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-
language-model-by-microsoft/

[30] A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri, “Program-
matically interpretable reinforcement learning,” in Proc. Int. Conf. Mach.
Learn. (ICML), 2018, pp. 5045–5054.

[31] H. Blockeel and L. De Raedt, “Top-down induction of first-order logical
decision trees,” Artif. Intell., vol. 101, pp. 285–297, May 1998.

[32] J. H. Friedman et al., Classification and Regression Trees. Belmont, CA,
USA: Wadsworth Brooks, 1984.

[33] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proc. 14th Int.
Conf. Artif. Intell. Statist. (AISTATS), 2011, pp. 627–635.

[34] Raw Data—Measuring Broadband America. Accessed: Feb. 25, 2020.
[Online]. Available: https://www.fcc.gov/reports-research/reports/
measuring-broadband-america/raw-data-measuring-broadband-america

[35] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Commute path
bandwidth traces from 3G networks: Analysis and applications,” in Proc.
4th ACM Multimedia Syst. Conf. (MMSys), 2013, pp. 114–118.

[36] R. Caruana, S. Lawrence, and C. L. Giles, “Overfitting in neural nets:
Backpropagation, conjugate gradient, and early stopping,” in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), 2001, pp. 402–408.

[37] L. Li et al., “A measurement study on multi-path TCP with multiple
cellular carriers on high speed rails,” in Proc. Conf. ACM Special Interest
Group Data Commun., Aug. 2018, pp. 161–175.

[38] J. van der Hooft et al., “HTTP/2-based adaptive streaming of HEVC
video over 4G/LTE networks,” IEEE Commun. Lett., vol. 20, no. 11,
pp. 2177–2180, Nov. 2016.

[39] Recommended Upload Encoding Settings—Youtube Help.
Accessed: Feb. 25, 2020. [Online]. Available: https://support.google.
com/youtube/answer/1722171

[40] R. Netravali et al., “Mahimahi: Accurate record- and-replay for HTTP,”
in Proc. USENIX Annu. Tech. Conf. (ATC), 2015, pp. 417–429.

[41] Chrome Devtools. Accessed: Feb. 25, 2020. [Online]. Available: https://
developers.google.com/web/tools/chrome-devtools/

[42] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” in Proc. Int. Conf. Learn. Represent. (ICLR),
2019, p. 42.

[43] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 1999, pp. 1057–1063.

[44] J. Gama, R. Rocha, and P. Medas, “Accurate decision trees for mining
high-speed data streams,” in Proc. 9th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), 2003, pp. 523–528.

[45] M. Hardt, E. Price, and N. Srebro, “Equality of opportunity in super-
vised learning,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2016,
pp. 3315–3323.

[46] S. Aghaei, M. J. Azizi, and P. Vayanos, “Learning optimal and fair
decision trees for non-discriminative decision-making,” in Proc. AAAI
Conf. Artif. Intell., 2019, pp. 1418–1426.

[47] A. Hameed, R. Dai, and B. Balas, “A decision-tree-based perceptual
video quality prediction model and its application in FEC for wireless
multimedia communications,” IEEE Trans. Multimedia, vol. 18, no. 4,
pp. 764–774, Apr. 2016.

[48] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang,
“Developing a predictive model of quality of experience for Inter-
net video,” in Proc. ACM SIGCOMM Conf. SIGCOMM, Aug. 2013,
pp. 339–350.

[49] N. D. Lane, P. Georgiev, and L. Qendro, “DeepEar: Robust smartphone
audio sensing in unconstrained acoustic environments using deep learn-
ing,” in Proc. ACM Int. Joint Conf. Pervas. Ubiquitous Comput., 2015,
pp. 283–294.

[50] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[51] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters
for efficient convnets,” in Proc. Int. Conf. Learn. Represent. (ICLR),
2017, pp. 1–13.

[52] W. Chen, J. T. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Com-
pressing neural networks with the hashing trick,” in Proc. Int. Conf.
Mach. Learn. (ICML), 2015, pp. 2285–2294.

[53] T. Matiisen, A. Oliver, T. Cohen, and J. Schulman, “Teacher-student
curriculum learning,” IEEE Trans. Neural Netw. Learn. Sys., vol. 31,
no. 9, pp. 3732–3740, Sep. 2019.

[54] S. Levine and V. Koltun, “Guided policy search,” in Proc. Int. Conf.
Mach. Learn. (ICML), 2013, pp. 1–9.

[55] T. Hester et al., “Deep Q-learning from demonstrations,” in Proc. AAAI,
2018, pp. 3223–3230.

[56] A. Dethise, M. Canini, and S. Kandula, “Cracking open the black box:
What observations can tell us about reinforcement learning agents,” in
Proc. Workshop Netw. Meets AI ML (NetAI), 2019, pp. 29–36.

[57] Z. Meng, M. Wang, J. Bai, M. Xu, H. Mao, and H. Hu, “Interpreting
deep learning-based networking systems,” in Proc. Annu. Conf. ACM
Special Interest Group Data Commun. Appl., Technol., Archit., Protocols
Comput. Commun., Jul. 2020, pp. 154–171.

[58] Y. Kazak, C. Barrett, G. Katz, and M. Schapira, “Verifying deep-RL-
Driven systems,” in Proc. Workshop Netw. Meets AI ML (NetAI), 2019,
pp. 83–89.

[59] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing clus-
ters,” in Proc. ACM Special Interest Group Data Commun., Aug. 2019,
pp. 270–288.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 15:33:55 UTC from IEEE Xplore. Restrictions apply.

736 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

[60] H. Mao et al., “Real-world video adaptation with reinforcement learn-
ing,” in Proc. ICML Reinforcement Learn. Real Life Workshop, 2019.

[61] S. M. Kakade and A. Tewari, “On the generalization ability of online
strongly convex programming algorithms,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), 2009, pp. 801–808.

Zili Meng (Graduate Student Member, IEEE)
received the B.Eng. degree from the Depart-
ment of Electronic Engineering, Tsinghua Univer-
sity, in 2019. He is currently pursuing the Ph.D.
degree with the Institute for Network Science and
Cyberspace, Tsinghua University. He has published
articles in ACM SIGCOMM, ACM Multimedia, and
IEEE JOURNAL ON SELECTED AREAS IN COMMU-
NICATIONS. His research interests include learning-
based networked systems and video streaming. He
was a recipient of the Microsoft Research Asia Fel-

lowship in 2020. He is also the Winner of the Student Research Competition
in ACM SIGCOMM 2018.

Yaning Guo is currently pursuing the bachelor’s
degree with the Department of Electronic Engineer-
ing, Tsinghua University. She has coauthored a paper
in ACM Multimedia. Her research interests include
networked systems and related algorithms.

Yixin Shen is currently pursuing the bachelor’s
degree with the Department of Electronic Engi-
neering, Tsinghua University. His research interests
include video streaming and related algorithms.

Jing Chen received the B.Eng. degree from the
Department of Electronic Engineering, Tsinghua
University, in 2020. She is currently pursuing the
master’s degree with the Institute for Network Sci-
ences and Cyberspace, Tsinghua University. She
has coauthored a paper in ACM Multimedia. Her
research interests include learning-based networked
systems and multimedia streaming technology.

Chao Zhou received the Ph.D. degree from the
Institute of Computer Science and Technology,
Peking University, Beijing, China, in 2014. He has
been an Algorithm Scientist with Beijing Kuaishou
Technology Company Ltd. His research interests
include HTTP video streaming, joint source-channel
coding, deep learning, and multimedia communi-
cations and processing. He has been a Reviewer
of IEEE TRANSACTIONS ON CIRCUITS AND SYS-
TEMS FOR VIDEO TECHNOLOGY, IEEE TRANS-
ACTIONS ON MULTIMEDIA, and IEEE TRANSAC-

TIONS ON WIRELESS COMMUNICATIONS. He received the Best Paper Award
presented by IEEE VCIP 2015 and the Best Student Paper Awards presented
by IEEE VCIP 2012.

Minhu Wang received the B.Eng. degree from
the Department of Electronic Engineering, Tsinghua
University, in 2019. He is currently pursuing the
Ph.D. degree with the Institute for Network Science
and Cyberspace, Tsinghua University. His research
interests include learning-based network systems and
network function virtualization.

Jia Zhang received the B.Eng. degree from the
Department of Electronic Engineering, Tsinghua
University, in 2018. She is currently pursuing the
Ph.D. degree with the Department of Computer
Science and Technology, Tsinghua University. Her
research interests include learning-based network
systems and transport layer.

Mingwei Xu (Senior Member, IEEE) is currently
a Full Professor with the Department of Computer
Science and Technology, Tsinghua University. His
research interests include future Internet architec-
ture, Internet routing, and network virtualization.
He is a member of the Technical Steering Com-
mittee of China Communications Standard Asso-
ciation (CCSA). He has won the Second Prize of
the National Scientific and Technological Progress
Award for three times and the Second Prize of
the National Technology Invention Award once. He

is also the winner of the National Science Foundation for Distinguished
Young Scholars of China. He has served as the TPC Chair or a member
for several IEEE conferences, such as ICPP, Globecom, and ICC. He has
chaired or participated in more than 30 research projects, and published more
than 200 articles.

Chen Sun received the B.S. degree from the Depart-
ment of Electronic Engineering, Tsinghua Univer-
sity, Beijing, China, in 2014, and the Ph.D. degree
from the Department of Computer Science and
Technology, Tsinghua University, in 2019. He is
currently an Engineer with Alibaba Group. He has
published articles in SIGCOMM, IEEE JOURNAL
ON SELECTED AREAS IN COMMUNICATIONS, ToN,
INFOCOM, ICNP, and so on. His research interests
include software-defined networks, network function
virtualization, and network monitoring. He was a

recipient of the Google Ph.D. Fellowship Award in 2018.

Hongxin Hu (Member, IEEE) received the Ph.D.
degree in computer science from Arizona State
University, Tempe, AZ, in 2012. He is currently
an Associate Professor with the Department of
Computer Science and Engineering, University at
Buffalo, The State University of New York. His
current research interests include security in emerg-
ing networking technologies, security in the Internet
of Things (IoT), security and privacy in social net-
works, and security in cloud and mobile computing.
He has published more than 100 refereed technical

articles, many of which appeared in top conferences and journals. He received
the NSF CAREER Award in 2019. He was a recipient of the Best Paper
Awards from ACSAC 2020, ACM SIGCSE 2018, and ACM CODASPY 2014,
and the Best Paper Award Honorable Mentions from ACM SACMAT 2016,
IEEE ICNP 2015, and ACM SACMAT 2011.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 12,2021 at 15:33:55 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

