
Poster Abstract: Always Heading for the Peak:
Learning to Route with Domain Knowledge

Jing Chen, Zili Meng, Mingwei Xu*
Institute for Network Science and Cyberspace, Tsinghua University

* Department of Computer Science and Technology, Tsinghua University
Beijing National Research Center for Information Science and Technology (BNRist)

j-chen16@tsinghua.org.cn, zilim@ieee.org, xumw@tsinghua.edu.cn

I. INTRODUCTION

Routing optimization is a well-known yet complicated re-
search topic for decades. On one hand, routing algorithms
usually have complex inputs (e.g., structural topology), outputs
(e.g., sequential paths for different demands), and optimization
goals (e.g., link utilization). On the other hand, due to the rapid
change of demands, routing algorithms must be fast enough to
make online decisions. Existing methods usually make a trade-
off between performance and efficiency. Offline algorithms [1]
tend to cast the problem into a Linear Program (LP), offering
near-optimal solutions yet taking up to tens of seconds, which
are too heavyweight for rapidly changing networked systems.
Online algorithms, such as shortest path (SP) and weighted
shortest path (WSP), are broadly used, but their performance
is far from optimal due to the ignorance of network status.
Conventional heuristic algorithms fail to efficiently capture
the dynamics inside varying network demands, which com-
promises the performance, as shown in Table I.

Recent advances in the machine learning community enable
us to achieve near-optimal performance and millisecond-level
decision latency at the same time, addressing the trade-off
above [2, 3]. There are also preliminary research efforts trying
to apply machine learning techniques into routing optimiza-
tions [4, 5]. However, existing approaches rarely address
the challenge of how to make routing decisions under con-
straints. For example, one common constraint in the routing
domain is avoiding loops. We take a learning-based routing
algorithm [4], which optimizes the flow split ratios, as an
example. As shown in Figure 1(a), since the optimizations at
different nodes are independent of each other, there may exist
inconsistency among their results and therefore form routing
loops. For example, when forwarding towards dst, assume
the flow split ratio at s1 to s2 is 0.8 and at s2 to s1 is
0.1. In this case, 8% of the flows originated from s1 will be
sent back to s1. There may be more routing loops involving
multiple links when the topology goes more complex.

The ignorance of constraints attributes to the insufficiency
of the design of existing learning-based routing algorithms. To
fully utilize the ability of DNNs, network operators tend to let
the DNNs learn everything themselves. This may work when
the topology is small enough (several nodes) and the optimiza-
tion goals are indirect and differentiable (e.g., predicting traffic

This poster is supported by the National Key R&D Program of
China (2017YFB0801701) and the National Science Foundation of China
(61625203, 61832013, 61872426). Mingwei Xu is the corresponding author.

TABLE I: Comparison of different routing methods
Methods Diverse Loop-free Demand-aware Capacity-aware

SP X
WSP X X
LR X X X

ALT X X X X
*SP: shortest path; WSP: shortest path weighted by capacity;
LR: learning-based routing in [4]; ALT: our method.

X
0.1

0.2

0.8

S1

S2

dst

S3

(a) Topology.

S1

dst

S3
S2

(b) Altitude illustration.

Fig. 1: According to the altitudes decided by the neural network,
s2 will not forward any packets to s1 whose altitude is lower.

demands) [4, 5]. However, when scaled to larger topologies,
existing learning-based routing algorithms could not provide
satisfying performance. For example, using the learning-based
routing algorithm in [4] (denoted as LR), in a 24-node topol-
ogy, 53% flows cannot arrive at the destination within 64
hops due to routing loops (Section III). Moreover, manually
detecting such routing loops requires considerable human
efforts. Therefore, existing algorithms either compromise by
predicting intermediate variables (e.g., traffic demands [4],
link latency [5]) and let network operators make decisions
subsequently, or do not scale well to real-world topologies [4].

To optimize the network performance directly in real-world
scenarios, our solution integrates domain knowledge into the
design of learning methods. Our key observation is that routing
is similar to climbing hills. Climbers may either directly climb
up along the gradient of the hill or going along the winding
hill road in a zig-zag way, but rarely go in the opposite
direction. Similarly, good routing policies will roughly route
flows towards the destination. As shown in Fig. 1(a), flows at
s2 may go by the direct link or by s3 to reach dst, but may
not go by s1 and make a long detour in the network.

Based on this observation, we introduce a new decision vari-
able for each node and each destination, denoted as altitude,
inspired by [6] to mimic the hill-climbing process. In this case,
different destinations construct their respective hills for each
node. As shown in Fig. 1(b), flows can only be routed from a
lower-altitude node to a higher-altitude node, therefore loops
are strictly avoided. In this formulation, routing decisions can
be efficiently expressed into fixed-length vectors and easily
trained to satisfy routing constraints.

We evaluate our altitude-based algorithm with simulations

on two real-world topologies. Results show that compared with
heuristics, our algorithm reduces maximum-link-utilization by
up to 29%. Compared with LR, we avoid routing loops and at
least 24% of more flows arrive at destinations within 64 hops.

II. DESIGN

As mentioned above, the key insight behind our algorithm
is that routing paths should not go back and forth or circle in
the network. To avoid loops, shortest path algorithm simply
restricts the flows on the single paths calculated by distances.
But in this way, critical links are likely to be over-loaded. As
an alternative, we offer altitudes to prevent flows from going
towards opposite directions. They help avoid routing loops as
well as be supportive of traffic diversion.

In another word, We expect intelligent loop-free decisions.
For example, in Figure 1(a), assume that s2 and s3 have
equal distances to dst. However, if the link between s2 and
dst is congested, we want clever decisions that lower the
altitude of s2 to make less flows go by s2 (e.g. flows at s3
could go by the direct link to dst) in this case. Therefore we
leave altitude decisions up to the neural network, hoping that
the network topology, traffic demands and link capacities can
be considered together. However, we encounter the following
challenges during design:
Challenge #1: Nondifferentiable objective. A straightfor-
ward challenge is that the optimization objective in the routing
problem is nondifferentiable. For example, the calculation
of link utilization or link hop of all flows needs to query
the index of the output of the model (e.g., flow split ratio).
Without formulating the optimization objective as an explicit
differentiable expression, optimization methods with direct
backpropagation are not applicable.

Inspired by recent advances in reinforcement learning (RL),
we could train an agent to make routing decisions by interact-
ing with the environment. The agent learns a policy for action-
making in current state under the guidance of the reward from
the environment. In the routing case, states are current traffic
demand matrices and link capacities. Actions are altitudes
(introduced above) and the flow split ratios. Rewards could
be defined based on the requirements of network operators
(e.g., path length, link utilization, etc.).
Challenge #2: Slow convergence. Another challenge is how
to make the algorithm converge efficiently. Existing initializa-
tion methods (e.g., Gaussian initialization) confuse the agent
in the first steps. Since flows are only allowed to route to a
node whose altitude is higher than the current node, building a
path from the source to the destination is hardly possible when
multiple links are involved and the altitudes are randomly
selected. Therefore, the agent cannot receive rewards for a
long time and has a great chance to diverge.

Our solution is to initialize the agent with a baseline. The
algorithm only needs to optimize the difference from the
baseline. Specifically, we introduce a naive altitude based on
the shortest path algorithm. The agent will only optimize the
difference between its altitudes and the altitudes from the SP.
In this way, training an agent on topologies with tens of nodes
can converge within a few hours in our experiments.

395 409 367

1660 1547

1175

SP WSP ALT0

500

1000

1500

2000

M
LU

 (k
bp

s)

 N
 G

(a) MLU

100
75.43

99.87100

46.97

98.62

SP/WSP LR ALT0

50

100

Ar
riv

al
 ra

tio
 (%

) N
 G

(b) Flow arrival ratio

Fig. 2: Simulation results on the NSF and GEANT2 topology
(denoted as N and G). Error bars span ± std.

III. PRELIMINARY EVALUATION

We evaluate our algorithm with two real-world topolo-
gies [5] : the 14-node NSF topology and the 24-node GEANT2
topology. Flow demands are uniformly sampled between
0.1Cavg and 0.5Cavg, where Cavg is the average of network
link capacities. We use a 3-layer perceptron to represent the
policy network. We set up our optimization goal as minimizing
the maximum-link-utilization (MLU) in the network.

We measure the MLU in different algorithms and present
the results in Figure 2(a). Our approach (denoted as ALT)
decreases MLU by 6.9% in NSF and 24.0% in GEANT2
comparing with SP and WSP. The performance improvement
in GEANT2 topology is more significant since our approach
scales well to larger topologies while heuristics do not.

We further measure the flow arrival ratios of different
algorithms and plot the results in Figure 2(b). We set Time-
to-Live (TTL) as 64 so that more flows (even with routing
loops) can reach the destination. Flow arrival ratios of ALT
are not 100% because an intermediate node may have a higher
altitude than all of its neighbors. Results demonstrate that
invalid altitude decisions are rarely made by ALT after training
whereas LR suffers from severe problems of routing loops.

Finally, we measure the computation time of our approach.
The offline-trained RL agent can make a routing decision
within 0.6 ms for both topologies, which is acceptable since
the period of route changes is much longer than 1 ms.

IV. CONCLUSIONS AND FUTURE WORK

We propose an improved RL-based routing algorithm by
making altitude decisions to follow the constraints in routing.
Our approach shows significant improvements against existing
ones. Real-world implementation of learning-based routing
algorithms may require further considerations, e.g. the size
of routing tables, which are left as future work.

REFERENCES

[1] C. Zhang, Y. Liu, W. Gong, J. Kurose et al., “On optimal routing with
multiple traffic matrices,” in Proc. IEEE INFOCOM, 2005.

[2] Z. Meng, J. Chen, Y. Guo, C. Sun et al., “Pitree: Practical implementation
of abr algorithms using decision trees,” in Proc. ACM Multimedia, 2019.

[3] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh, “Learning scheduling algorithms for data processing clusters,” in
Proc. ACM SIGCOMM, 2019.

[4] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar, “Learning to route,”
in Proc. ACM HotNets, 2017.

[5] K. Rusek, J. Suárez-Varela, A. Mestres, P. Barlet-Ros, and A. Cabellos-
Aparicio, “Unveiling the potential of graph neural networks for network
modeling and optimization in sdn,” in Proc. ACM SOSR, 2019.

[6] N. Oba, H. Kobayashi, and T. Nakamura, “An adaptive network routing
method by electrical-circuit modeling,” in Proc. IEEE INFOCOM, 1993.

