Physical-Layer Informed Multipath Redundancy Optimization for Mobile Real-Time Communication

Jing Chen, Zili Meng, Mingwei Xu (INSC, Tsinghua University)

Background

- Popular RTC applications pose strict requirements on end-to-end latency
 - E.g., cloud video gaming, video conferencing, remote surgery ...
- High variations of mobile “last mile” greatly impact the path condition
- A common solution: Send data redundantly on multiple paths
 - E.g., when the condition of a path worsens, use congestion control, AQM ...
- Duplicate data on another path (in good condition)

Question: How to adapt multipath redundancy rates to path condition?

Design Challenges

C#1: Which PHY-layer indicator shall we use?

S#1: SINR (signal to interference noise ratio)
 - directly related to path condition, accessible

C#2: How to use SINR?

S#2: A latency Profiler

-5dB (SINR) \(\rightarrow\) Profiler \(\rightarrow\) Latency distribution

C#3: How to seek a balance between low tail latency and high goodput?

S#3: A Scheduler to optimize multipath redundancy rates

- A Mealy FSM
- Probability modelling

Motivation

Existing solutions:

<table>
<thead>
<tr>
<th>Redundancy</th>
<th>Aggressive</th>
<th>Conservative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path condition profiling</td>
<td>Oblivous</td>
<td>Base on RTT measurement</td>
</tr>
<tr>
<td>Example</td>
<td>ReMP TCP</td>
<td>LowRTT</td>
</tr>
</tbody>
</table>

Performance

- Low goodput
- High tail latency

Our design goal: to strike a balance between tail latency & goodput

Key Factor: timely and accurately observe path degradation

However: transport-layer observation of path degradation is delayed
(illustrated in the Background figure)

Our Contribution: PhyRO

- Use **physical-layer indicators** to decide multipath redundancy rates
- PHY-layer indicators can more timely reflect path degradation

Preliminary Evaluation

Trace-based simulation

Wireless link propagation: ITU-R 1411 NLoS model

UE mobility: random walking model

Effectively reduces the stuttering rate

Negligible goodput degradation

On-going Work

- Verify Profiler’s accuracy
- Measure the algorithm overhead
- Experiment in NS-3 & testbed
- Implement into protocol stack